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An algorithm is presented for the estimation of the fundamental frequency (F0) of speech or
musical sounds. It is based on the well-known autocorrelation method with a number of
modifications that combine to prevent errors. The algorithm has several desirable features. Error
rates are about three times lower than the best competing methods, as evaluated over a database of
speech recorded together with a laryngograph signal. There is no upper limit on the frequency
search range, so the algorithm is suited for high-pitched voices and music. The algorithm is
relatively simple and may be implemented efficiently and with low latency, and it involves few
parameters that must be tuned. It is based on a signal model~periodic signal! that may be extended
in several ways to handle various forms of aperiodicity that occur in particular applications. Finally,
interesting parallels may be drawn with models of auditory processing. ©2002 Acoustical Society
of America. @DOI: 10.1121/1.1458024#

PACS numbers: 43.72.Ar, 43.75.Yy, 43.70.Jt, 43.66.Hg@DOS#
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I. INTRODUCTION

The fundamental frequency (F0) of a periodic signal is
the inverse of its period, which may be defined as the sm
est positive member of the infinite set of time shifts th
leave the signal invariant. This definition applies strictly on
to a perfectlyperiodic signal, an uninteresting object~sup-
posing one exists! because it cannot be switched on or off
modulated in any way without losing its perfect periodici
Interesting signals such as speech or music depart from
riodicity in several ways, and the art of fundamental fr
quency estimation is to deal with them in a useful and c
sistent way.

The subjective pitch of a sound usually depends on
fundamental frequency, but there are exceptions. Sou
may be periodic yet ‘‘outside the existence region’’ of pit
~Ritsma, 1962; Pressnitzeret al., 2001!. Conversely, a sound
may not be periodic, but yet evoke a pitch~Miller and Tay-
lor, 1948; Yost, 1996!. However, over a wide range pitch an
period are in a one-to-one relation, to the degree that
word ‘‘pitch’’ is often used in the place ofF0 , andF0 esti-
mation methods are often referred to as ‘‘pitch detection
gorithms,’’ or PDA ~Hess, 1983!. Modern pitch perception
models assume that pitch is derived either from the per
icity of neural patterns in the time domain~Licklider, 1951;
Moore, 1997; Meddis and Hewitt, 1991; Cariani and D
gutte, 1996!, or else from the harmonic pattern of partia
resolved by the cochlea in the frequency domain~Goldstein,
1973; Wightman, 1973; Terhardt, 1974!. Both processes
yield the fundamental frequency or its inverse, the period

Some applications give forF0 a different definition,
closer to their purposes. For voiced speech,F0 is usually

a!Portions of this work were presented at the 2001 ASA Spring Meeting
the 2001 Eurospeech conference.

b!Electronic mail: cheveign@ircam.fr
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defined as the rate of vibration of the vocal folds. Perio
vibration at the glottis may produce speech that is less p
fectly periodic because of movements of the vocal tract t
filters the glottal source waveform. However, glottal vibr
tion itself may also show aperiodicities, such as change
amplitude, rate or glottal waveform shape~for example, the
duty cycle of open and closed phases!, or intervals where the
vibration seems to reflect several superimposed periodic
~diplophony!, or where glottal pulses occur without an obv
ous regularity in time or amplitude~glottalizations, vocal
creak or fry! ~Hedelin and Huber, 1990!. These factors con-
spire to make the task of obtaining a useful estimate
speechF0 rather difficult.F0 estimation is a topic that con
tinues to attract much effort and ingenuity, despite the ma
methods that have been proposed. The most comprehen
review is that of Hess~1983!, updated by Hess~1992! or
Hermes~1993!. Examples of recent approaches are instan
neous frequency methods~Abe et al., 1995; Kawaharaet al.,
1999a!, statistical learning and neural networks~Barnard
et al., 1991; Rodet and Doval, 1992; Doval, 1994!, and au-
ditory models~Duifhuis et al., 1982; de Cheveigne´, 1991!,
but there are many others.

Supposing that it can be reliably estimated,F0 is useful
for a wide range of applications. SpeechF0 variations con-
tribute to prosody, and in tonal languages they help dis
guish lexical categories. Attempts to useF0 in speech recog-
nition systems have met with mitigated success, in p
because of the limited reliability of estimation algorithm
Several musical applications needF0 estimation, such as au
tomatic score transcription or real-time interactive system
but here again the imperfect reliability of available metho
is an obstacle.F0 is a useful ingredient for a variety of signa
processing methods, for example,F0-dependent spectral en
velope estimation~Kawaharaet al., 1999b!. Finally, a fairly
recent application ofF0 is as metadata for multimedia con
tent indexing.

d

1917917/14/$19.00 © 2002 Acoustical Society of America



th

on
f a

ti

vid
rre
a
c
s

al

l

tly

ng
n

ut-
d,

s at
’’
arch

the
a

on

f

to
er

ope
line
e
he
The present article introduces a method forF0 estima-
tion that produces fewer errors than other well-known me
ods. The name YIN~from ‘‘yin’’ and ‘‘yang’’ of oriental
philosophy! alludes to the interplay between autocorrelati
and cancellation that it involves. This article is the first o
series of two, of which the second~Kawaharaet al., in
preparation! is also devoted to fundamental frequency es
mation.

II. THE METHOD

This section presents the method step by step to pro
insight as to what makes it effective. The classic autoco
lation algorithm is presented first, its error mechanisms
analyzed, and then a series of improvements are introdu
to reduce error rates. Error rates are measured at each
over a small database for illustration purposes. Fuller ev
ation is proposed in Sec. III.

A. Step 1: The autocorrelation method

The autocorrelation function~ACF! of a discrete signa
xt may be defined as

FIG. 1. ~a! Example of a speech waveform.~b! Autocorrelation function
~ACF! calculated from the waveform in~a! according to Eq.~1!. ~c! Same,
calculated according to Eq.~2!. The envelope of this function is tapered
zero because of the smaller number of terms in the summation at largt.
The horizontal arrows symbolize the search range for the period.
1918 J. Acoust. Soc. Am., Vol. 111, No. 4, April 2002
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r t~t!5 (
j 5t11

t1W

xjxj 1t, ~1!

wherer t(t) is the autocorrelation function of lagt calculated
at time indext, andW is the integration window size. This
function is illustrated in Fig. 1~b! for the signal plotted in
Fig. 1~a!. It is common in signal processing to use a sligh
different definition:

r t8~t!5 (
j 5t11

t1W2t

xjxj 1t. ~2!

Here the integration window size shrinks with increasi
values oft, with the result that the envelope of the functio
decreases as a function of lag as illustrated in Fig. 1~c!. The
two definitions give the same result if the signal is zero o
side@ t11, t1W#, but differ otherwise. Except where note
this article assumes the first definition~also known as
‘‘modified autocorrelation,’’ ‘‘covariance,’’ or ‘‘cross-
correlation,’’ Rabiner and Shafer, 1978; Huanget al., 2001!.

In response to a periodic signal, the ACF shows peak
multiples of the period. The ‘‘autocorrelation method
chooses the highest non-zero-lag peak by exhaustive se
within a range of lags~horizontal arrows in Fig. 1!. Obvi-
ously if the lower limit is too close to zero, the algorithm
may erroneously choose the zero-lag peak. Conversely, if
higher limit is large enough, it may erroneously choose
higher-order peak. The definition of Eq.~1! is prone to the
second problem, and that of Eq.~2! to the first~all the more
so as the window sizeW is small!.

To evaluate the effect of a tapered ACF envelope
error rates, the function calculated as in Eq.~1! was multi-
plied by a negative ramp to simulate the result of Eq.~2!
with a window sizeW5tmax:

r t9~t!5H r t~t!~12t/tmax! if t<tmax,

0, otherwise.
~3!

Error rates were measured on a small database of speech~see
Sec. III for details! and plotted in Fig. 2 as a function o

FIG. 2. F0 estimation error rates as a function of the slope of the envel
of the ACF, quantified by its intercept with the abscissa. The dotted
represents errors for which theF0 estimate was too high, the dashed lin
those for which it was too low, and the full line their sum. Triangles at t
right represent error rates for ACF calculated as in Eq.~1! (tmax5`). These
rates were measured over a subset of the database used in Sec. III.
A. de Cheveigné and H. Kawahara: YIN, an F0 estimator
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tmax. The parametertmax allows the algorithm to be biase
to favor one form of error at the expense of the other, wit
minimum of total error for intermediate values. Using Eq.~2!
rather than Eq.~1! introduces a natural bias that can be tun
by adjusting W. However, changing the window size h
other effects, and one can argue that a bias of this sor
useful, should be applied explicitly rather than implicitl
This is one reason to prefer the definition of Eq.~1!.

The autocorrelation method compares the signal to
shifted self. In that sense it is related to the AMDF meth
~average magnitude difference function, Rosset al., 1974;
Ney, 1982! that performs its comparison using differenc
rather than products, and more generally to time-dom
methods that measure intervals between events in
~Hess, 1983!. The ACF is the Fourier transform of the pow
spectrum, and can be seen as measuring the regular sp
of harmonics within that spectrum. The cepstrum meth
~Noll, 1967! replaces the power spectrum by the log mag
tude spectrum and thus puts less weight on high-amplit
parts of the spectrum~particularly near the first formant tha
often dominates the ACF!. Similar ‘‘spectral whitening’’ ef-
fects can be obtained by linear predictive inverse filtering
center-clipping~Rabiner and Schafer, 1978!, or by splitting
the signal over a bank of filters, calculating ACFs with
each channel, and adding the results after amplitude nor
ization ~de Cheveigne´, 1991!. Auditory models based on au
tocorrelation are currently one of the more popular ways
explain pitch perception~Meddis and Hewitt, 1991; Carian
and Delgutte, 1996!.

Despite its appeal and many efforts to improve its p
formance, the autocorrelation method~and other methods fo
that matter! makes too many errors for many application
The following steps are designed to reduce error rates.
first row of Table I gives the gross error rate~defined in Sec.
III and measured over a subset of the database used in
section! of the basic autocorrelation method based on Eq.~1!
without bias. The next rows are rates for a succession
improvements described in the next paragraphs. These n
bers are given for didactic purposes; a more formal eva
tion is reported in Sec. III.

B. Step 2: Difference function

We start by modeling the signalxt as a periodic function
with periodT, by definition invariant for a time shift ofT:

xt2xt1T50, ;t. ~4!

TABLE I. Gross error rates for the simple unbiased autocorrelation met
~step 1!, and for the cumulated steps described in the text. These rates
measured over a subset of the database used in Sec. III. Integration wi
size was 25 ms, window shift was one sample, search range was 40 to
Hz, and threshold~step 4! was 0.1.

Version Gross error~%!

Step 1 10.0
Step 2 1.95
Step 3 1.69
Step 4 0.78
Step 5 0.77
Step 6 0.50
J. Acoust. Soc. Am., Vol. 111, No. 4, April 2002
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The same is true after taking the square and averaging ov
window:

(
j 5t11

t1W

~xj2xj 1T!250. ~5!

Conversely, an unknown period may be found by formi
the difference function:

dt~t!5(
j 51

W

~xj2xj 1t!
2, ~6!

and searching for the values oft for which the function is
zero. There is an infinite set of such values, all multiples
the period. The difference function calculated from the sig
in Fig. 1~a! is illustrated in Fig. 3~a!. The squared sum ma
be expanded and the function expressed in terms of the A

dt~t!5r t~0!1r t1t~0!22r t~t!. ~7!

The first two terms are energy terms. Were they constant,
difference functiondt(t) would vary as the opposite o
r t(t), and searching for a minimum of one or the maximu
of the other would give the same result. However, the sec
energy term also varies witht, implying that maxima of
r t(t) and minima ofdt(t) may sometimes not coincide. In
deed, the error rate fell to 1.95% for the difference functi
from 10.0% for unbiased autocorrelation~Table I!.

The magnitude of this decrease in error rate may co
as a surprise. An explanation is that the ACF implemen
according to Eq.~1! is quite sensitive to amplitude change
As pointed out by Hess~1983, p. 355!, an increase in signa
amplitude with time causes ACF peak amplitudes to gr
with lag rather than remain constant as in Fig. 1~b!. This
encourages the algorithm to choose a higher-order peak
make a ‘‘too low’’ error ~an amplitude decrease has the o
posite effect!. The difference function is immune to this pa

FIG. 3. ~a! Difference function calculated for the speech signal of Fig. 1~a!.
~b! Cumulative mean normalized difference function. Note that the funct
starts at 1 rather than 0 and remains high until the dip at the period.
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ticular problem, as amplitude changes cause period-to-pe
dissimilarity to increase with lag in all cases. Hess points
that Eq.~2! produces a function that is less sensitive to a
plitude change@Eq. ~A1! also has this property#. However,
using d(t) has the additional appeal that this function
more closely grounded in the signal model of Eq.~4!, and
paves the way for the next two error-reduction steps, the
of which deals with ‘‘too high’’ errors and the second wi
‘‘too low’’ errors.

C. Step 3: Cumulative mean normalized difference
function

The difference function of Fig. 3~a! is zero at zero lag
and often nonzero at the period because of imperfect per
icity. Unless a lower limit is set on the search range,
algorithm must choose the zero-lag dip instead of the pe
dip and the method must fail. Even if a limit is set, a stro
resonance at the first formant~F1! might produce a series o
secondary dips, one of which might be deeper than the
riod dip. A lower limit on the search range is not a satisfa
tory way of avoiding this problem because the ranges of
andF0 are known to overlap.

The solution we propose is to replace the differen
function by the ‘‘cumulative mean normalized differen
function:’’

dt8~t!5H 1, if t50,

dt~t!Y F ~1/t!(
j 51

t

dt~ j !G otherwise.
~8!

This new function is obtained by dividing each value of t
old by its average over shorter-lag values. It differs fro
d(t) in that it starts at 1 rather than 0, tends to remain la
at low lags, and drops below 1 only whered(t) falls below
average@Fig. 3~b!#. Replacingd by d8 reduces ‘‘too high’’
errors, as reflected by an error rate of 1.69%~instead of
1.95%!. A second benefit is to do away with the upper fr
quency limit of the search range, no longer needed to av
the zero-lag dip. A third benefit is to normalize the functi
for the next error-reduction step.

D. Step 4: Absolute threshold

It easily happens that one of the higher-order dips of
difference function@Fig. 3~b!# is deeper than the period dip
If it falls within the search range, the result is a subharmo
error, sometimes called ‘‘octave error’’~improperly because
not necessarily in a power of 2 ratio with the correct valu!.
The autocorrelation method is likewise prone to choosin
high-order peak.

The solution we propose is to set an absolute thresh
and choose the smallest value oft that gives a minimum of
d8 deeper than that threshold. If none is found, the glo
minimum is chosen instead. With a threshold of 0.1, the e
rate drops to 0.78%~from 1.69%! as a consequence of
reduction of ‘‘too low’’ errors accompanied by a very slig
increase of ‘‘too high’’ errors.

This step implements the word ‘‘smallest’’ in the phra
‘‘the period is the smallest positive member of a set’’~the
1920 J. Acoust. Soc. Am., Vol. 111, No. 4, April 2002
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previous step implemented the word ‘‘positive’’!. The thresh-
old determines the list of candidates admitted to the set,
can be interpreted as the proportion of aperiodic power
erated within a ‘‘periodic’’ signal. To see this, consider th
identity:

2~xt
21xt1T

2 !5~xt1xt1T!21~xt2xt1T!2. ~9!

Taking the average over a window and dividing by 4,

1/~2W! (
j 5t11

t1W

~xj
21xj 1T

2 !

51/~4W! (
j 5t11

t1W

~xj1xj 1T!211/~4W!

3 (
j 5t11

t1W

~xj2xj 1T!2. ~10!

The left-hand side approximates the power of the signal. T
two terms on the right-hand side, both positive, constitut
partition of this power. The second is zero if the signal
periodic with periodT, and is unaffected by adding or sub
tracting periodic components at that period. It can be in
preted as the ‘‘aperiodic power’’ component of the sign
power. Witht5T the numerator of Eq.~8! is proportional to
aperiodic power whereas its denominator, average ofd(t)
for t between 0 andT, is approximately twice the signa
power. Thus,d8(T) is proportional to the aperiodic/tota
power ratio. A candidateT is accepted in the set if this rati
is below threshold. We’ll see later on that the exact value
this threshold does not critically affect error rates.

E. Step 5: Parabolic interpolation

The previous steps work as advertised if the period i
multiple of the sampling period. If not, the estimate may
incorrect by up to half the sampling period. Worse, the lar
value of d8(t) sampled away from the dip may interfer
with the process that chooses among dips, thus causin
gross error.

A solution to this problem is parabolic interpolation
Each local minimum ofd8(t) and its immediate neighbors i
fit by a parabola, and the ordinate of the interpolated m
mum is used in the dip-selection process. The abscissa o
selected minimum then serves as a period estimate. Actu
one finds that the estimate obtained in this way is sligh
biased. To avoid this bias, the abscissa of the correspon
minimum of the raw difference functiond(t) is used in-
stead.

Interpolation of d8(t) or d(t) is computationally
cheaper than upsampling the signal, and accurate to the
tent thatd8(t) can be modeled as a quadratic function ne
the dip. Simple reasoning argues that this should be the
if the signal is band-limited. First, recall that the ACF is th
Fourier transform of the power spectrum: if the signalxt is
bandlimited, so is its ACF. Second, the ACF is a sum
cosines, which can be approximated near zero by a Ta
series with even powers. Terms of degree 4 or more co
mainly from the highest frequency components, and if th
are absent or weak the function is accurately represente
A. de Cheveigné and H. Kawahara: YIN, an F0 estimator
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lower order terms~quadratic and constant!. Finally, note that
the period peak has the same shape as the zero-lag peak
the same shape~modulo a change in sign! as the period dip
of d(t), which in turn is similar to that ofd8(t). Thus,
parabolic interpolation of a dip is accurate unless the sig
contains strong high-frequency components~in practice,
above about one-quarter of the sampling rate!.

Interpolation had little effect on gross error rates ov
the database~0.77% vs 0.78%!, probably becauseF0’s were
small in comparison to the sampling rate. However, te
with synthetic stimuli found that parabolic interpolation r
duced fine error at allF0 and avoided gross errors at hig
F0 .

F. Step 6: Best local estimate

The role of integration in Eqs.~1! and ~6! is to ensure
that estimates are stable and do not fluctuate on the
scale of the fundamental period. Conversely, any such fl
tuation, if observed, should not be considered genuine.
sometimes found, for nonstationary speech intervals, tha
estimate fails at a certain phase of the period that usu
coincides with a relatively high value ofd8(Tt), whereTt is
the period estimate at timet. At another phase~time t8! the
estimate may be correct and the value ofd8(Tt8) smaller.
Step 6 takes advantage of this fact, by ‘‘shopping’’ arou
the vicinity of each analysis point for a better estimate.

The algorithm is the following. For each time indext,
search for a minimum ofdu8(Tu) for u within a small interval
@ t2Tmax/2, t1Tmax/2#, whereTu is the estimate at timeu
andTmax is the largest expected period. Based on this ini
estimate, the estimation algorithm is applied again with
restricted search range to obtain the final estimate. Us
Tmax525 ms and a final search range of620% of the initial
estimate, step 6 reduced the error rate to 0.5%~from 0.77%!.
Step 6 is reminiscent of median smoothing or dynamic p
gramming techniques~Hess, 1983!, but differs in that it takes
into account a relatively short interval and bases its cho
on quality rather than mere continuity.

The combination of steps 1–6 constitutes a new met
~YIN ! that is evaluated by comparison to other methods
the next section. It is worth noting how the steps build up
one another. Replacing the ACF~step 1! by the difference
function ~step 2! paves the way for the cumulative mea
normalization operation~step 3!, upon which are based th
threshold scheme~step 4! and the measured8(T) that selects
the best local estimate~step 6!. Parabolic interpolation~step
5! is independent from other steps, although it relies on
spectral properties of the ACF~step 1!.

III. EVALUATION

Error rates up to now were merely illustrative. This se
tion reports a more formal evaluation of the new method
comparison to previous methods, over a compilation of
tabases of speech recorded together with the signal
laryngograph~an apparatus that measures electrical re
tance between electrodes placed across the larynx!, from
which a reliable ‘‘ground-truth’’ estimate can be derived. D
tails of the databases are given in the Appendix. The lar
J. Acoust. Soc. Am., Vol. 111, No. 4, April 2002
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gographF0 estimate was derived automatically and check
visually, and estimates that seemed incorrect were remo
from the statistics. This process removed unvoiced and
irregularly voiced portions~diplophony, creak!. Some studies
include the latter, but arguably there is little point in testi
an algorithm on conditions for which correct behavior is n
defined.

When evaluating the candidate methods, values that
fered by more than 20% from laryngograph-derived e
mates were counted as ‘‘gross errors.’’ This relatively p
missive criterion is used in many studies, and measures
difficult part of the task on the assumption that if an initi
estimate is within 20% of being correct, any of a number
techniques can be used to refine it. Gross errors are fur
broken down into ‘‘too low’’~mainly subharmonic! and ‘‘too
high’’ errors.

In itself the error rate is not informative, as it depends
the difficulty of the database. To draw useful conclusio
different methods must be measured on the same datab
Fortunately, the availability of freely accessible databa
and software makes this task easy. Details of availability a
parameters of the methods compared in this study are g
in the Appendix. In brief, postprocessing and voiced
unvoiced decision mechanisms were disabled~where pos-
sible!, and methods were given a common search range o
to 800 Hz, with the exception of YIN that was given a
upper limit of one-quarter of the sampling rate~4 or 5 kHz
depending on the database!.

Table II summarizes error rates for each method a
database. These figures should not be taken as an acc
measure of the intrinsic quality of each algorithm or imp
mentation, as our evaluation conditions differ from those
which they were optimized. In particular, the search ran
~40 to 800 Hz! is unusually wide and may have destabiliz
methods designed for a narrower range, as evidenced by
imbalance between ‘‘too low’’ and ‘‘two high’’ error rates fo
several methods. Rather, the figures are a sampling of
performance that can be expected of ‘‘off-the shelf’’ impl
mentations of well-known algorithms in these difficult co
ditions. It is worth noting that the ranking of methods diffe
between databases. For example methods ‘‘acf’’ and ‘‘na
do well on DB1~a large database with a total of 28 spea
ers!, but less well on other databases. This shows the n
for testing on extensive databases.

YIN performs best of all methods over all the databas
Averaged over databases, error rates are smaller by a fa
of about 3 with respect to the best competing method. E
rates depend on the tolerance level used to decide wheth
estimate is correct or not. For YIN about 99% of estima
are accurate within 20%, 94% within 5%, and about 60
within 1%.

IV. SENSITIVITY TO PARAMETERS

Upper and lowerF0 search bounds are important param
eters for most methods. In contrast to other methods, Y
needs no upper limit~it tends, however, to fail forF0’s be-
yond one quarter of the sampling rate!. This should make it
useful for musical applications in whichF0 can become very
high. A wide range increases the likelihood of ‘‘finding’’ a
1921A. de Cheveigné and H. Kawahara: YIN, an F0 estimator
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TABLE II. Gross error rates for severalF0 estimation algorithms over four databases. The first six methods
implementations available on the Internet, the next four are methods developed locally, and YIN is the m
described in this paper. See Appendix for details concerning the databases, estimation methods, and e
procedure.

Method

Gross error~%!

DB1 DB2 DB3 DB4 Average ~low/high!

pda 10.3 19.0 17.3 27.0 16.8 ~14.2/2.6!
fxac 13.3 16.8 17.1 16.3 15.2 ~14.2/1.0!
fxcep 4.6 15.8 5.4 6.8 6.0 ~5.0/1.0!
ac 2.7 9.2 3.0 10.3 5.1 ~4.1/1.0!
cc 3.4 6.8 2.9 7.5 4.5 ~3.4/1.1!
shs 7.8 12.8 8.2 10.2 8.7 ~8.6/0.18!

acf 0.45 1.9 7.1 11.7 5.0 ~0.23/4.8!
nacf 0.43 1.7 6.7 11.4 4.8 ~0.16/4.7!
additive 2.4 3.6 3.9 3.4 3.1 ~2.5/0.55!
TEMPO 1.0 3.2 8.7 2.6 3.4 ~0.53/2.9!

YIN 0.30 1.4 2.0 1.3 1.03 ~0.37/0.66!
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incorrect estimate, and so relatively low error rates despi
wide search range are an indication of robustness.

In some methods@spectral, autocorrelation based on E
~2!#, the window size determines both the maximum per
that can be estimated~lower limit of the F0 search range!,
and the amount of data integrated to obtain any partic
estimate. For YIN these two quantities are decoupled~Tmax

andW!. There is, however, a relation between the appropr
value for one and the appropriate value for the other.
stability of estimates over time, the integration window mu
be no shorter than the largest expected period. Otherw
one can construct stimuli for which the estimate would
incorrect over a certain phase of the period. The largest
pected period obviously also determines the range of
that need to be calculated, and together these considera
justify the well known rule of thumb:F0 estimation requires
enough signal to covertwice the largest expected period. Th
window may, however, be larger, and it is often observed t
a larger window leads to fewer errors at the expense of
duced temporal resolution of the time series of estima
Statistics reported for YIN were obtained with an integrati
window of 25 ms and a period search range of 25 ms,
shortest compatible with a 40 Hz lower bound onF0 . Figure
4~a! shows the number of errors for different window size

A parameter specific to YIN is the threshold used in s
4. Figure 4~b! shows how it affects error rate. Obviously
does not require fine tuning, at least for this task. A value
0.1 was used for the statistics reported here. A final par
eter is the cutoff frequency of the initial low-pass filtering
the signal. It is generally observed, with this and other me
ods, that low-pass filtering leads to fewer errors, but ob
ously setting the cutoff below theF0 would lead to failure.
Statistics reported here were for convolution with a 1-
square window~zero at 1 kHz!. Error rates for other value
are plotted in Fig. 4~c!. In summary, this method involve
comparatively few parameters, and these do not require
tuning.

V. IMPLEMENTATION CONSIDERATIONS

The basic building block of YIN is the function define
in Eq. ~1!. Calculating this formula for everyt andt is com-
oc. Am., Vol. 111, No. 4, April 2002
a

.
d

r

te
r
t
e,

e
x-
s
ns

at
e-
s.

e

.
p

f
-

-
i-

s

ne

putationally expensive, but there are at least two approac
to reduce cost. The first is to implement Eq.~1! using a
recursion formula over time~each step adds a new term an
subtracts an old!. The window shape is then square, but
triangular or yet closer approximation to a Gaussian sh
can be obtained by recursion~there is, however, little reaso
not to use a square window!.

A second approach is to use Eq.~2! which can be cal-
culated efficiently by FFT. This raises two problems. T
first is that the energy terms of Eq.~7! must be calculated
separately. They are not the same asr t8(0), but rather the

FIG. 4. Error rates of YIN:~a! as a function of window size,~b! as a
function of threshold, and~c! as a function of low-pass prefilter cutoff fre
quency~open symbol is no filtering!. The dotted lines indicate the value
used for the statistics reported for YIN in Table II. Rates here were meas
over a small database, a subset of that used in Sec. III. Performance do
depend critically on the values of these parameters, at least for this data
A. de Cheveigné and H. Kawahara: YIN, an F0 estimator
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sum of squares over the first and lastW2t samples of the
window, respectively. Both must be calculated for eacht, but
this may be done efficiently by recursion overt. The second
problem is that the sum involves more terms for smallt than
for large. This introduces an unwanted bias that can be
rected by dividing each sample ofd(t) by W2t. However,
it remains that large-t samples ofd(t) are derived from a
smaller window of data, and are thus less stable than smt
samples. In this sense the FFT implementation is not as g
as the previous one. It is, however, much faster when p
ducing estimates at a reduced frame rate, while the prev
approach may be faster if a high-resolution time series
estimates is required.

Real-time applications such as interactive music tra
ing require low latency. It was stated earlier that estimat
requires a chunk of signal of at least 2Tmax. However, step 4
allows calculations started att50 to terminate as soon as a
acceptable candidate is found, rather than to proceed ove
full search range, so latency can be reduced toTmax1T. Fur-
ther reduction is possible only if integration time is reduc
below Tmax, which opens the risk of erroneously locking
the fine structure of a particularly long period.

The valued8(T) may be used as a confidence indica
~large values indicate that theF0 estimate is likely to be
unreliable!, in postprocessing algorithms to correct theF0

trajectory on the basis of the most reliable estimates, an
template-matching applications to prevent the distance
tween a pattern and a template from being corrupted by
reliable estimates within either. Another application is
multimedia indexing, in which anF0 time series may have to
be down-sampled to save space. The confidence measu
lows down-sampling to be based on correct rather than
correct estimates. This scheme is implemented in
MPEG7 standard~ISO/IEC–JTC–1/SC–29, 2001!.

VI. EXTENSIONS

The YIN method described in Sec. II is based on t
model of Eq.~4! ~periodic signal!. The notion of model is
insightful: an ‘‘estimation error’’ means simply that th
model matched the signal for an unexpected set of par
eters. Error reduction involves modifying the model to ma
such matches less likely. This section presents exten
models that address situations where the signal deviates
tematically from the periodic model. Tested quantitative
over our speech databases, none of these extensions
proved error rates, probably because the periodic model u
by YIN was sufficiently accurate for this task. For this reas
we report no formal evaluation results. The aim of this s
tion is rather to demonstrate the flexibility of the approa
and to open perspectives for future development.

A. Variable amplitude

Amplitude variation, common in speech and mus
compromises the fit to the periodic model and thus indu
errors. To deal with it the signal may be modeled as a p
odic function with time-varying amplitude:

xt1T /at1T5xt /at . ~11!
J. Acoust. Soc. Am., Vol. 111, No. 4, April 2002
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If one supposes that the ratioa5at1T /at does not depend
on t ~as in an exponential increase or decrease!, the value of
a may be found by least squares fitting. Substituting t
value in Eq.~6! then leads to the following function:

dt~t!5r t~0!@12r t~t!2/r t~0!r t1t~0!#. ~12!

Figure 5 illustrates the result. The top panel displays
time-varying signal, the middle a functiond8(t) derived ac-
cording to the standard procedure, and the bottom the s
function derived using Eq.~12! instead of Eq.~6!. Interest-
ingly, the second term on the right of Eq.~12! is the square
of the normalized ACF.

With two parameters the model of Eq.~12! is more
‘‘permissive’’ and more easily fits an amplitude-varying si
nal. However, this also implies more opportunities for ‘‘u
expected’’ fits, in other words, errors. Perhaps for that rea
it actually produced a slight increase in error rates~0.57% vs.
0.50% over the restricted database!. However, it was used
with success to process the laryngograph signal~see the Ap-
pendix!.

B. Variable F0

Frequency variation, also common in speech and mu
is a second source of aperiodicity that interferes withF0

estimation. WhenF0 is constant a lagt may be found for

FIG. 5. ~a! Sine wave with exponentially decreasing amplitude.~b! Differ-
ence function calculated according to Eq.~6! ~periodic model!. ~c! Differ-
ence function calculated according to Eq.~12! ~periodic model with time-
varying amplitude!. Period estimation is more reliable and accurate us
the latter model.
1923A. de Cheveigné and H. Kawahara: YIN, an F0 estimator
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which (xj2xj 1t)
2 is zero over the whole integration win

dow of d(t), but with a time-varyingF0 it is identically zero
only at one point. On either side, its value (xj2xj 1t)

2 varies
quadratically with distance from this point, and thusd(t)
varies with the cube of window size,W.

A shorter window improves the match, but we know th
the integration window must not be shortened beyond a
tain limit ~Sec. IV!. A solution is to split the window into two
or more segments, and to allowt to differ between segment
within limits that depend on the maximum expected rate
change. Xu and Sun~2000! give a maximum rate ofF0

change of about66 oct/s, but in our databases it did n
often exceed61 oct/s ~Fig. 10!. With a split window the
search space is larger but the match is improved~by a factor
of up to 8 in the case of two segments!. Again, this model is
more easily satisfied than that of Eq.~4!, and therefore may
introduce new errors.

C. Additive noise: Slowly varying DC

A common source of aperiodicity is additive nois
which can take many forms. A first form is simply a tim
varying ‘‘DC’’ offset, produced for example by a singer
breath when the microphone is too close. The deleteri
effect of a DC ramp, illustrated in Fig. 6~b!, can be elimi-
nated by using the following formula, obtained by setting t
derivative ofdt(t) with respect to the DC offset to zero:

FIG. 6. ~a! Sine wave with linearly increasing DC offset.~b! Difference
function calculated according to Eq.~6!. ~c! Difference function calculated
according to Eq.~13! ~periodic model with DC offset!. Period estimation is
more reliable and accurate using the latter model.
1924 J. Acoust. Soc. Am., Vol. 111, No. 4, April 2002
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dt~t!5r t~0!1r t1t~0!22r t~t!1F (
j 5t11

t1W

~xj2xj 1t!G2

~13!

as illustrated in Fig. 6~c!.
Again, this model is more permissive than the strict p

riodic model and thus may introduce new errors. For t
reason, and because our speech data contained no ob
DC offsets, it gave no improvement and instead slightly
creased error rates~0.51% vs 0.50%!. However, it was used
with success to process the laryngograph signal, which
large slowly varying offsets.

D. Additive noise: Periodic

A second form of additive noise is a concurrent period
sound, for example, a voice or an instrument, hum, etc.
cept in the unlucky event that the periods are in cert
simple ratios, the effects of the interfering sound can
eliminated by applying a comb filter with impulse respon
h(t)5d(t)2d(t1U) whereU is the period of the interfer-
ence. If U is known, this processing is trivial. IfU is un-
known, both it and the desired periodT may be found by the
joint estimation algorithm of de Cheveigne´ and Kawahara
~1999!. This algorithm searches the~t,n! parameter space fo
a minimum of the following difference function:

ddt~t,n!5 (
j 5t11

t1W

~xj2xj 1t2xj 1n1xj 1t1n!2. ~14!

The algorithm is computationally expensive because the s
must be recalculated for all pairs of parameter values. Ho
ever, this cost can be reduced by a large factor by expan
the squared sum of Eq.~14!:

ddt~t,n!5r t~0!1r t1t~0!1r t1n~0!1r t1t1n~0!

22r t~t!22r t~n!12r t~t1n!

12r t1t~n2t!22r t1t~n!22r t1n~t!. ~15!

The right-hand terms are the same ACF coefficients t
served for single period estimation. If they have been pre
culated, Eq.~15! is relatively cheap to form. The two-perio
model is again more permissive than the one-period mo
and thus may introduce new errors. As an example, re
that the sum of two closely spaced sines is equally well
terpreted as such~by this model!, or as an amplitude-
modulated sine~by the periodic or variable-amplitude per
odic models!. Neither interpretation is more ‘‘correct’’ than
the other.

E. Additive noise: Different spectrum from target

Suppose now that the additive noise is neither DC
periodic, but that its spectral envelope differs from that of t
periodic target. If both long-term spectra are known a
stable, filtering may be used to reinforce the target a
weaken the interference. Low-pass filtering is a simple
ample and its effects are illustrated in Fig. 4~c!.

If spectra of target and noise differ only on a short-te
basis, one of two techniques may be applied. The first is
split the signal over a filter bank~for example, an auditory
model filter bank! and calculate a difference function from
A. de Cheveigné and H. Kawahara: YIN, an F0 estimator
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each output. These functions are then added to obtain a s
mary difference function from which a periodicity measure
derived. Individual channels are then removed one by
until periodicity improves. This is reminiscent of Licklider’
~1951! model of pitch perception.

The second technique applies an adaptive filter at
input, and searches jointly for the parameters of the filter
the period. This is practical for a simple filter with impuls
responseh(t)5d(t)6d(t1V), whereV and the sign deter
mine the shape of the power transfer function illustrated
Fig. 7. The algorithm is based on the assumption that so
value ofV and sign will advantage the target over the int
ference and improve periodicity. The parameterV and the
sign are determined, together with the periodT, by searching
for a minimum of the function:

ddt8~t,n!5r t~0!1r t1t~0!1r t1n~0!1r t1t1n~0!

62r t~t!22r t~n!72r t~t1n!

72r t1t~n2t!22r t1t~n!62r t1n~t!, ~16!

which ~for the negative sign! is similar to Eq. ~15!. The
search spaces forT andV should be disjoint to prevent th
comb-filter tuned toV from interfering with the estimation o
T. Again, this model is more permissive than the stand
periodic model, and the same warnings apply as for ot
extensions to that model.

F. Additive noise: Same spectrum as target

If the additive noise shares the same spectral envelop
the target on an instantaneous basis, none of the prev
methods is effective. Reliability and accuracy can nevert
less be improved if the target is stationary and of sufficien
long duration. The idea is to make as many period-to-per
comparisons as possible given available data. Denoting aD
the duration, and setting the window sizeW to be at least as
large as the maximum expected period, the following fu
tions are calculated:

dk~t!5 (
j 51

D2kW

~xj2xj 2t!
2, k51,...,D/W. ~17!

The lag~t! axis of each function is then ‘‘compressed’’ by
factor of D/W2k, and the functions are summed:

FIG. 7. Power transfer functions for filters with impulse responsed t

2d t1t ~full line! and d t1d t1t ~dashed line! for t51 ms. To reduce the
effect of additive noise onF0 estimation, the algorithm searches for th
value of t and the sign that maximize the power of the periodic tar
relative to aperiodic interference. The dotted line is the spectrum of a typ
vowel.
J. Acoust. Soc. Am., Vol. 111, No. 4, April 2002
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D/W

dk„t/~D/W2k!…. ~18!

This function is the sum of (D/W)(D/W21)/2 differences.
For tÞT each difference includes both a deterministic p
~target! and a noise part, whereas fort5T they only include
the noise part. Deterministic parts add in phase while no
parts tend to cancel each other out, so the salience of the
at t5T is reinforced. Equation~18! resembles~with differ-
ent coefficients! the ‘‘narrowed autocorrelation function’’ o
Brown and Puckette~1989! that was used by Brown an
Zhang ~1991! for musicalF0 estimation, and by de Chev
eigné~1989! and Slaney~1990! in pitch perception models.

To summarize, the basic method can be extended in
eral ways to deal with particular forms of aperiodicity. The
extensions may in some cases be combined~for example,
modeling the signal as a sum of periodic signals with vary
amplitudes!, although all combinations have not yet be
explored. We take this flexibility to be a useful feature of t
approach.

VII. RELATIONS WITH AUDITORY PERCEPTION
MODELS

As pointed out in the Introduction, the autocorrelatio
model is a popular account of pitch perception, but attem
to turn that model into an accurate speechF0 estimation
method have met with mitigated success. This study sho
how it can be done. Licklider’s~1951! model involved a
network of delay lines~the t parameter! and coincidence-
counting neurons~a probabilistic equivalent of multiplica
tion! with temporal smoothing properties~the equivalent of
integration!. A previous study~de Cheveigne´, 1998! showed
that excitatory coincidence could be replaced by inhibito
‘‘anti-coincidence,’’ resulting in a ‘‘cancellation model o
pitch perception’’ in many regards equivalent to autocorre
tion. The present study found that cancellation is actua
more effective, but also that it may be accurately imp
mented as a sum of autocorrelation terms.

Cancellation models~de Cheveigne´, 1993, 1997, 1998!
require both excitatory and inhibitory synapses with fa
temporal characteristics. The present study suggests tha
same functionality might be obtained with fast excitato
synapses only, as illustrated in Fig. 8. There is evidence
fast excitatory interaction in the auditory system, for e
ample in the medial superior olive~MSO!, as well as for fast
inhibitory interaction, for example within the lateral superi
olive ~LSO! that is fed by excitatory input from the cochlea
nucleus, and inhibitory input from the medial trapezoid
body. However, the limit on temporal accuracy may be low
for inhibitory than for excitatory interaction~Joris and Yin,
1998!. A model that replaces one by the other without loss
functionality is thus a welcome addition to our panoply
models.

Sections VI D and VI E showed how a cascade of su
tractive operations could be reformulated as a sum of a
correlation terms. Transposing to the neural domain,
suggests that the cascaded cancellation stages suggest
de Cheveigne´ and Kawahara~1999! to account for multiple
pitch perception, or by de Cheveigne´ ~1997! to account for

t
al
1925A. de Cheveigné and H. Kawahara: YIN, an F0 estimator
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concurrent vowel identification, might instead be imp
mented in a single stage as a neural equivalent of Eq.~15! or
~16!. Doing away with cascaded time-domain process
avoids the assumption of a succession of phase-locked
rons, and thus makes such models more plausible. Sim
remarks apply to cancellation models of binaural process
~Culling and Summerfield, 1995; Akeroyd, 2000; Breeb
et al., 2001!.

To summarize, useful parallels may be drawn betwe
signal processing and auditory perception. The YIN alg
rithm is actually a spin-off of work on auditory models. Co
versely, addressing this practical task may be of benefi
auditory modeling, as it reveals difficulties that are not ob
ous in modeling studies, but that are nevertheless faced
auditory processes.

VIII. DISCUSSION

Hundreds ofF0 estimation methods have been propos
in the past, many of them ingenious and sophisticated. T
mathematical foundation usually assumes periodicity,
when that is degraded~which is when smart behavior is mo
needed! they may break down in ways not easy to predict.
pointed out in Sec. II A, seemingly different estimation me
ods are related, and our analysis of error mechanisms
probably be transposed, mutatis mutandis, to a wider clas
methods. In particular, every method is faced with the pr
lem of trading off too-high versus too-low errors. This
usually addressed by applying some form of bias as ill
trated in Sec. II A. Bias may be explicit as in that section, b
often it is the result of particular side effects of the algorith
such as the tapering that resulted with Eq.~2! from limited
window size. If the algorithm has several parameters, cr
assignment is difficult. The key to the success of YIN

FIG. 8. ~a! Neural cancellation filter~de Cheveigne´, 1993, 1997!. The gating
neuron receives excitatory~direct! and inhibitory ~delayed! inputs, and
transmits any spike that arrives via the former unless another spike ar
simultaneously via the latter. Inhibitory and excitatory synapses must
be fast~symbolized by thin lines!. Spike activity is averaged at the output
produced slowly varying quantities~symbolized by thick lines!. ~b! Neural
circuit with the same properties as in~a!, but that only requires fast excita
tory synapses. Inhibitory interaction involves slowly varying quantit
~thick lines!. Double ‘‘chevrons’’ symbolize that output discharge probab
ity is proportional to the square of input discharge probability. These circ
should be understood as involving many parallel fibers to approximate
tinuous operations on probabilities.
1926 J. Acoust. Soc. Am., Vol. 111, No. 4, April 2002
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probably step 3 that allows it to escape from the bias pa
digm, so that the two types of error can be addressed in
pendently. Other steps can be seen as either preparing fo
step~steps 1 and 2! or building upon it~steps 4 and 6!.

Parabolic interpolation~step 5! gives subsample resolu
tion. Very accurate estimates can be obtained using an in
val of signal that is not large. Precisely, to accurately e
mate the periodT of a perfectly periodic signal,and to be
sure that the true period is not instead greater thanT, at least

es
th

s
n-

FIG. 9. Histograms ofF0 values over the four databases. Each line cor
sponds to a different speaker, either male~full lines! or female~dotted lines!.
The bin width is one semitone~

1
12 of an octave!. The skewed or bimodal

distributions of database 3 are due to the presence of material pronounc
a falsetto voice.

FIG. 10. Histograms of rate ofF0 change for each of the four database
Each line is an aggregate histogram over all speakers of the database
rate of change is measured over a 25-ms time increment~one period of the
lowest expectedF0!. The bin width is 0.13 oct/s. The asymmetry of th
distributions reflects the well-known declining trend ofF0 in speech.
A. de Cheveigné and H. Kawahara: YIN, an F0 estimator



re
d

r
th

re

a
ig
r
w
as
b
an

nt
in
p

u
as
as
ac
at
a

em

o
e

d
-

h
q
d

w

he
rti
o
a

e
te
d

er
th
.

ted
in
oc-
lel

m
nd
d

. It
ph-

and
he
da-

s-

d
ple
are
of-

did
us
e-
m-

ch,
re

-

oke
, for

50
the

ed

ro-
total
the

pro-

,
a-
2T11 samples of data are needed. If this is granted, the
no theoretical limit to accuracy. In particular, it is not limite
by the familiar uncertainty principleDTDF5const.

We avoided familiar postprocessing schemes such
median smoothing~Rabiner and Schafer, 1978! or dynamic
programming~Ney, 1982; Hess, 1983!, as including them
complicates evaluation and credit assignment. Nothing p
vents applying them to further improve the robustness of
method. The aperiodicity measured8(T) may be used to
ensure that estimates are corrected on the basis of their
ability rather than continuityper se.

The issue of voicing detection was also avoided, ag
because it greatly complicates evaluation and credit ass
ment. The aperiodicity measured8t seems a good basis fo
voicing detection, perhaps in combination with energy. Ho
ever, equating voicing with periodicity is not satisfactory,
some forms of voicing are inherently irregular. They pro
ably still carry intonation cues, but how they should be qu
tified is not clear. In a companion paper~Kawaharaet al., in
preparation!, we present a rather different approach toF0

estimation and glottal event detection, based on insta
neous frequency and the search for fixed points in mapp
along the frequency and time axes. Together, these two
pers offer a new perspective on the old task ofF0 estimation.

YIN has been only informally evaluated on music, b
there are reasons to expect that it is appropriate for that t
Difficulties specific to music are the wide range and f
changes inF0 . YIN’s open-ended search range and the f
that it performs well without continuity constraints put it
an advantage over other algorithms. Other potential adv
tages, yet to be tested, are low latency for interactive syst
~Sec. V!, or extensions to deal with polyphony~Sec. VI D!.
Evaluation on music is complicated by the wide range
instruments and styles to be tested and the lack of a w
labeled and representative database.

What is new? Autocorrelation was proposed for perio
icity analysis by Licklider~1951!, and early attempts to ap
ply it to speech are reviewed in detail by Hess~1983!, who
also traces the origins of difference-function methods suc
the AMDF. The relation between the two, exploited in E
~7!, was analyzed by Ney~1982!. Steps 3 and 4 were applie
to AMDF by de Cheveigne´ ~1990! and de Cheveigne´ ~1996!,
respectively. Step 5~parabolic interpolation! is a standard
technique, applied for example to spectrum peaks in theF0

estimation method of Duifhuiset al. ~1982!. New are step 6,
the idea of combining steps as described, the analysis of
it all works, and most importantly the formal evaluation.

IX. CONCLUSION

An algorithm was presented for the estimation of t
fundamental frequency of speech or musical sounds. Sta
from the well-known autocorrelation method, a number
modifications were introduced that combine to avoid estim
tion errors. When tested over an extensive database of sp
recorded together with a laryngograph signal, error ra
were a factor of 3 smaller than the best competing metho
without postprocessing. The algorithm has few paramet
and these do not require fine tuning. In contrast to most o
methods, no upper limit need be put on theF0 search range
J. Acoust. Soc. Am., Vol. 111, No. 4, April 2002
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The method is relatively simple and may be implemen
efficiently and with low latency, and may be extended
several ways to handle several forms of aperiodicity that
cur in particular applications. Finally, an interesting paral
may be drawn with models of auditory processing.
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APPENDIX: DETAILS OF THE EVALUATION
PROCEDURE

1. Databases

The five databases comprised a total of 1.9 h of spee
of which 48% were labeled as regularly voiced. They we
produced by 48 speakers~24 male, 24 female! of Japanese
~30!, English~14!, and French~4!. Each included a laryngo
graph waveform recorded together with the speech.

~1! DB1: Fourteen male and 14 female speakers each sp
30 Japanese sentences for a total of 0.66 h of speech
the purpose of evaluation ofF0-estimation algorithms
~Atake et al., 2000!. The data include a ‘‘voiced–
unvoiced’’ mask that was not used here.

~2! DB2: One male and one female speaker each spoke
English sentences for a total of 0.12 h of speech, for
purpose of evaluation ofF0-estimation algorithms~Bag-
shaw et al., 1993!. The database can be download
from the URL ^http://www.cstr.ed.ac.uk/
˜pcb/fda–eval.tar.gz&.

~3! DB3: Two male and two female speakers each p
nounced between 45 and 55 French sentences for a
of 0.46 h of speech. The database was created for
study of speech production, and includes sentences
nounced according to several modes: normal~141!, head
~30!, and fry ~32! ~Vu Ngoc Tuan and d’Alessandro
2000!. Sentences in fry mode were not used for evalu
tion because it is not obvious how to defineF0 when
phonation is not periodic.
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~4! DB4: Two male speakers of English and one male a
one female speaker of Japanese produced a total of
h speech, for the purpose of deriving prosody rules
speech synthesis~Campbell, 1997!.

~5! DB5: Five male and five female speakers of Engl
each pronunced a phonetically balanced text for a t
of 0.15 h of speech. The database can be downloa
from ^ftp://ftp.cs.keele.ac.uk/pub/pitch/Speech&.

Ground-truthF0 estimates for the first four databas
were extracted from the laryngograph signal using YIN. T
threshold parameter was set to 0.6, and the schemes of
VI A and VI C were implemented to cope with the larg
variable DC offset and amplitude variations of the laryng
graph signal. Estimates were examined together with
laryngograph signal, and a reliability mask was crea
manually based on the following two criteria:~1! any esti-
mate for which theF0 estimate was obviously incorrect wa
excluded and~2! any remaining estimate for which there w
evidence of vocal fold vibration was included. The first c
terion ensured that all estimates were correct. The sec
aimed to include as many ‘‘difficult’’ data as possible. Es
mate values themselves were not modified. Estimates ha
same sampling rate as the speech and laryngograph si
~16 kHz for DB1, DB3, and DB4, 20 kHz for database DB2!.
Figures 9 and 10 show the range ofF0 andF0 change rate
over these databases.

It could be argued that applying the same method
speech and laryngograph data gives YIN an advantage
tive to other methods. Estimates were all checked visua
and there was no evidence of particular values that co
only be matched by the same algorithm applied to the spe
signal. Nevertheless, to make sure, tests were also perfor
on three databases using ground truth not based on YIN.
laryngograph signal of DB1 was processed by the TEM
method of Kawaharaet al. ~1999a!, based on instantaneou
frequency and very different from YIN, and estimates we
checked visually as above to derive a reliability mask. Sco
are similar~Table III, column 2! to those obtained previousl
~Table II, column 2!. Scores were also measured for DB2 a

TABLE III. Gross error rates measured using alternative ground truth. D
manually checked estimates derived from the laryngograph signal usin
TEMPO method of Kawaharaet al. ~1999b!. DB2 and DB5: estimates de
rived independently by the authors of those databases.

Method

Gross error~%!

DB1 DB2 DB5

pda 9.8 14.5 15.1
fxac 13.2 14.9 16.1
fxcep 4.5 12.5 8.9
ac 2.7 7.3 5.1
cc 3.3 6.3 8.0
shs 7.5 11.1 9.4

acf 0.45 2.5 3.1
nacf 0.43 2.3 2.8
additive 2.16 3.4 3.7
TEMPO 0.77 2.8 4.6

YIN 0.29 2.2 2.4
1928 J. Acoust. Soc. Am., Vol. 111, No. 4, April 2002
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DB5, using referenceF0 estimates produced by the autho
of those databases using their own criteria. The ranking
methods is similar to that found in Table III, suggesting th
the results in that table are not a product of our particu
procedures.

2. Reference methods

Reference methods include several methods availabl
the Internet. Their appeal is that they have been indep
dently implemented and tuned, are representative of tool
common use, and are easily accessible for comparison
poses. Their drawback is that they are harder to control,
that the parameters used may not do them full justice. O
reference methods are only locally available. Details of
rameters, availability and/or implementation are given belo

ac: This method implements the autocorrelation meth
of Boersma~1993! and is available with the Praat system
^http://www.fon.hum.uva.nl/praat/&. It was called with the
command ‘‘To Pitch~ac!...0.01 40 15 no 0.0 0.0 0.01 0.0 0.
800.’’

cc: This method, also available with the Praat system
described as performing a cross-correlation analysis. It
called with the command: ‘‘To Pitch~cc!... 0.01 40 15 no 0.0
0.0 0.01 0.0 0.0 800.’’

shs: This method, also available with the Praat syste
is described as performing spectral subharmonic summa
according to the algorithm of Hermes~1988!. It was called
with the command: ‘‘To Pitch~shs!...0.01 40 4 1700 15 0.84
800 48.’’

pda: This method implements the eSRPD algorithm
Bagshaw~1993!, derived from that of Medanet al. ~1991!,
and is available with the Edinburgh Speech Tools Library
^http://www.cstr.ed.ac.uk/&. It was called with the command
‘‘pda input–file -o out-put–file -L -d 1 -shift 0.001-length
0.1-fmax 800-fmin 40-lpfilter 1000 -n 0.’’ Examination o
the code suggests that the program uses continuity c
straints to improve tracking.

fxac: This program is based on the ACF of the cub
waveform and is available with the Speech Filing System
^http://www.phon.ucl.ac.uk/resource/sfs/&. Examination of
the code suggests that the search range is restricted to
400 Hz. It provides estimates only for speech that is judg
‘‘voiced,’’ which puts it at a disadvantage with respect
programs that always offer an estimate.

fxcep: This program is based on the cepstrum meth
and is also available with the Speech Filing System. Exa
nation of the code suggests that the search range is restr
to 67–500 Hz. It provides estimates only for speech tha
judged ‘‘voiced,’’ which puts it at a disadvantage with re
spect to programs that always offer an estimate.

additive: This program implements the probabilist
spectrum-based method of Doval~1994! and is only locally
available. It was called with the command: ‘‘additive -0 -
input–file -f 40 -F 800 -G 1000 -X -f0ascii -I 0.001.’’

acf: This program calculates the ACF according to E
~1! using an integration window size of 25 ms, multiplied b
a linear ramp with interceptTmax535 ms~tuned for best per-
formance over DB1!, and chooses the global maximum b
tween 1.25 to 25 ms~40 to 800 Hz!.

:
he
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nacf: As ‘‘acf’’ but using the normalized ACF accordin
to Eq. ~12!.

TEMPO : This program implements the instantaneo
frequency method developed by the second author~Kawa-
haraet al., 1999a!.

YIN : The YIN method was implemented as described
this article with the following additional details. Equation~1!
was replaced by the following variant:

r t~t!5 (
j 5t2t/22W/2

t2t/21W/2

xjxj 1t , ~A1!

which forms the scalar product between two windows t
shift symmetrically in time with respect to the analysis poi
The window size was 25 ms, the threshold parameter
0.1, and theF0 search range was 40 Hz to one quarter
sampling rate~4 or 5 kHz depending on the database!. The
window shift was 1 sample~estimates were produced at th
same sampling rate as the speech waveform!.

3. Evaluation procedure

Algorithms were evaluated by counting the number
estimates that differed from the reference by more than 2
~gross error rate!. Reference estimates were time shifted a
downsampled as necessary to match the alignment and
pling rate of each method. Alignment was determined
taking the minimum error rate over a range of time sh
between speech-based and laryngograph-based estim
This compensated for time shifts due to acoustic propaga
from glottis to microphone, or implementation difference
Some estimation algorithms work~in effect! by comparing
two windows of data that are shifted symmetrically in tim
with respect to the analysis point, whereas others work~in
effect! by comparing a shifted window to a fixed window. A
F0-dependent corrective shift should be used in the la
case.

A larger search range gives more opportunities for er
so search ranges must be matched across methods. Me
that implement a voicing decision are at a disadvantage w
respect to methods that do not~incorrect ‘‘unvoiced’’ deci-
sions count as gross errors!, so the voicing decision mecha
nism should be disabled. Conversely, postprocessing
give an algorithm an advantage. Postprocessing typically
volves parameters that are hard to optimize and behavior
is hard to interpret, and is best evaluated separately from
basic algorithm. These recommendations cannot alway
followed, either because different methods use radically
ferent parameters, or because their implementation does
allow them to be controlled. Method ‘‘pda’’ uses continui
constraints and postprocessing. The search range of ‘‘fx
was 80–400 Hz, while that of ‘‘fxcep’’ was 67–500 Hz, an
these two methods produce estimates only for speech th
judged voiced. We did not attempt to modify the program
as that would have introduced a mismatch with the publi
available version. These differences must be kept in m
when comparing results across methods.
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