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Multipitch Analysis of Polyphonic Music and Speech
Signals Using an Auditory Model

Anssi Klapuri, Member, IEEE

Abstract—A method is described for estimating the fundamental
frequencies of several concurrent sounds in polyphonic music and
multiple-speaker speech signals. The method consists of a com-
putational model of the human auditory periphery, followed by
a periodicity analysis mechanism where fundamental frequencies
are iteratively detected and canceled from the mixture signal. The
auditory model needs to be computed only once, and a computa-
tionally efficient strategy is proposed for implementing it. Simula-
tion experiments were made using mixtures of musical sounds and
mixed speech utterances. The proposed method outperformed two
reference methods in the evaluations and showed a high level of
robustness in processing signals where important parts of the au-
dible spectrum were deleted to simulate bandlimited interference.
Different system configurations were studied to identify the condi-
tions where pitch analysis using an auditory model is advantageous
over conventional time or frequency domain approaches.

Index Terms—Acoustic signal analysis, fundamental frequency
estimation, music information retrieval, pitch perception.

I. INTRODUCTION

P ITCH analysis of polyphonic music and multiple-speaker
speech signals is useful for many purposes. Applications

include automatic music transcription, speech separation, struc-
tured audio coding, and music information retrieval. The task
of estimating the fundamental frequencies (F0s) of several con-
current sounds—multiple-F0 estimation—is closely related to
sound separation and auditory scene analysis, since an algorithm
performing this task goes a long way towards organizing a com-
plex signal into its constituent sound sources [1]. This paper pro-
poses a method for doing this in single-channel audio signals.

A number of different approaches have been proposed for
multiple F0 estimation (see [2] and [3] for a review). The first
algorithms were developed to transcribe polyphonic music and
were more or less heuristic in nature [4]–[7]. Methods based on
modeling the auditory scene analysis (ASA) function in humans
were later proposed by Mellinger [8], Kashino and Tanaka [9],
Ellis [10], Godsmark and Brown [11], and Sterian [12], presum-
ably inspired by Bregman’s work on human ASA [13]. Signal
model-based Bayesian inference methods were investigated by
Goto [14], Davy et al. [15], Cemgil [16], and Kameoka et al.
[17]. Most recently, unsupervised learning methods, such as in-
dependent component analysis, sparse coding, and nonnegative
matrix factorization, have been proposed by Casey and Westner
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[18], Lepain [19], Smaragdis and Brown [20], Abdallah and
Plumbley [21], and Virtanen [22].

Auditory model-based methods represent an important thread
of work in this area since the early 1990s. By these we mean
methods which employ a peripheral hearing model to calculate
an intermediate data representation that is then used in further
signal analysis. The rationale in doing this is that humans are
very good at resolving sound mixtures, and therefore it seems
natural to employ the same data representation that is available
to the human brain. Auditory model-based methods have been
proposed at least by Meddis and Hewitt [23], de Cheveigné
[24], and Wu, Wang, and Brown [25] for speech signals, and
by Martin [26], Tolonen and Karjalainen [27], and Marolt [28]
for music signals. The mentioned methods are oriented towards
practical pitch extraction in speech and music, as opposed to the
work on pitch perception models themselves, which aim at re-
producing psychophysical data and phenomena in an accurate
manner. Excellent reviews on pitch perception models can be
found in [29] and [30].

This paper proposes a multiple F0 estimator which consists
of a computational model of the human auditory periphery, fol-
lowed by a periodicity analysis method where F0s are iteratively
detected and canceled from the mixture signal. For both parts,
computationally efficient techniques are presented which make
the overall method more than twice as fast than real time on a
PC with a 2.8-GHz Pentium 4 processor. In particular, a mecha-
nism is described which speeds up the analysis at the subbands
of an auditory model. In the periodicity analysis part, we re-
place the conventional autocorrelative analysis with a transform
which is more robust in polyphonic signals and can be used for a
wide pitch range between 40 Hz and 2.1 kHz. Some parts of this
work have been previously published in two conferences papers
[31], [32].

One goal of this paper is to identify the conditions where an
auditory model-based pitch analysis has significant advantage
over more conventional time- or frequency-domain approaches.
It will be shown that these conditions include especially the pro-
cessing of bandlimited signals or signals were parts of the spec-
trum are not usable due to bandlimited interference.

The method was evaluated using mixtures of musical sounds
and mixed speech utterances. The results are compared with
two reference methods [27], [33]. Also, we compare alternative
configurations of the proposed method where either the auditory
model is disabled or the iterative estimation and cancellation
mechanism is replaced with a joint estimator.

II. PROPOSED METHOD

Fig. 1 shows an overview of the proposed method, where the
two parts, the auditory model and the iterative F0 detection part,
are clearly seen. The auditory model is detailed in Fig. 2. Except
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Fig. 1. Overview of the proposed method. An auditory model is followed by
the iterative detection and cancellation of the most prominent period.

Fig. 2. Structure of the peripheral hearing model. An input signal is processed
with a bandpass filterbank, after which the subband signals are compressed, rec-
tified, and low-pass filtered. Short-time magnitude spectra are calculated within
the bands, raised to power p, and then summed across bands.

for the computational efficiency considerations which are de-
scribed later, the auditory model follows the structure of modern
pitch perception models. In these, a signal is generally processed
as follows.

1) An input signal is passed through a bank of linear
bandpass filters which models the frequency selectivity of
the inner ear [34], [35].

2) The signal at band (a.k.a. channel) is subjected to
nonlinear processing to obtain a signal which models
the level of neural activity in the auditory nerve fibers rep-
resenting channel [36], [37].

3) Periodicity analysis of some form takes place for the sig-
nals within the channels [38], [39].

4) Periodicity information is combined across the bands.
As a concrete example of Steps 3 and 4, Meddis and Hewitt
[38] computed short-time autocorrelation function (ACF) esti-
mates within the channels at successive times , and then
summed these to obtain a summary ACF, ,
where prominent peaks were used to predict the perceived pitch.

Different parts of the system shown in Figs. 1 and 2 are now
described in more detail.

A. Auditory Filterbank

The most important parameter of the auditory filters is their
bandwidth. The equivalent rectangular bandwidths (ERB)1 of
the filters we use are

Hz (1)

where is the filter’s center frequency, is the bandwidth, and
is the subband index. These bandwidths

have been reported for humans in [40].

1The ERB of a filter is defined as the bandwidth of a perfectly rectangular
filter which has an integral over its power response which is the same as for the
specified filter.

Fig. 3. Upper panels show the magnitude responses of two gammatone filters
(solid line) and those of the proposed approximation (dashed line). The lower
panels show the impulse responses of the two gammatone filters (solid line) and
the difference between the impulse responses of the gammatone filter and the
proposed approximation (dotted line). The left and right panels correspond to
center frequencies 100 Hz and 1 kHz, respectively.

In order that the power responses of the auditory filters would
sum approximately to a flat response, the center frequencies are
distributed uniformly on a critical-band scale

(2)

where is the critical-band-number of the lowest band, and
determines the band density. We use a total of 70

filters having center frequencies between 65 Hz and 5.2 kHz,
corresponding to and .

The power and impulse responses of the auditory filters have
been studied in humans and other mammals and are quite accu-
rately known [34], [35]. The gammatone filter provides an ex-
cellent fit to the experimental data, and is therefore widely used
[41]. Fig. 3 illustrates the frequency response and the impulse
response of the gammatone filter.

Slaney has proposed a computationally efficient implementa-
tion of the gammatone filter by using a cascade of four second-
order infinite-impulse response (IIR) filters [42]. We propose a
different implementation for two reasons. First, we wanted to
attenuate the “tails” of the power response further away from
the filter’s center frequency, since the spectral variation of mu-
sical sounds is very large and we wanted to ensure that a cer-
tain filter is not dominated by frequency components too far
from its center frequency. Second, the computational efficiency
is improved by using filter sections which have only coefficient
values 1 in the numerator of their -transform, thus reducing
the number of multiplication operations needed.

The proposed filter structure uses two types of IIR resonators
as building blocks, referred to as Resonator 1 and 2 in the fol-
lowing. An individual auditory filter consists of a cascade of
these. The -transform of Resonator 1 is of the form

(3)
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where the parameters , and are derived in Appendix A.
Resonator 2 is of the same form but without the zeros, having a

-transform of the form

(4)

Appendix A describes the calculation of the parameters
, and , and choosing the optimal configuration of

second-order sections. It was found that a cascade of four
resonators, two of each type, leads to the most accurate result.
In a floating-point implementation, the factors can be
combined into a single scalar to speed up the computation.

The upper panels of Fig. 3 compare the frequency response
of the gammatone filter with the proposed approximation at two
different center frequencies, 100 Hz and 1 kHz. The biggest in-
accuracies occur near zero frequency, where the proposed filter
has a deeper notch than the gammatone filter. In practical ap-
plications, complete suppression of the dc component is merely
a desirable feature. The lower panels illustrate the impulse re-
sponses of the two gammatone filters, with a dotted line showing
the difference between the gammatone filter and the approxima-
tion.

B. Neural Transduction

The signal at each band is processed to model the trans-
form characteristics of the inner hair cells (IHCs) which pro-
duce firing activity in the auditory nerve. Several computational
models of the IHCs have been proposed in the literature [36]. A
problem with these is that a realistic IHC model depends criti-
cally on the absolute level of its input and has a dynamic range
of only about 25 dB [43], [37]. As a consequence, most prac-
tical systems have replaced an accurate IHC model by a cascade
of signal processing operations that model the main character-
istics of the IHCs explicitly: 1) dynamic level compression, 2)
half-wave rectification, and 3) low-pass filtering [10], [25], [31],
[44]. This is also the approach followed here.

Compression was implemented with an automatic gain con-
trol, scaling the signal within analysis frame with the
factor

(5)

where is the standard deviation of the signal within
the frame . From the viewpoint of an individual analysis frame,
the compression flattens (“whitens”) the spectral energy dis-
tribution, since the scaling factors normalize the auditory
channel variances towards unity when . Here, the
value is applied. For comparison, Ellis [10] normal-
ized the variances of the subband signals to unity, corresponding
to . Tolonen and Karjalainen, in turn, applied inverse
warped-linear-prediction filtering on the input wide-band signal
which leads to a very similar result [27].

The compressed subband signals are subjected to half-wave
rectification (HWR), defined as

HWR (6)

Fig. 4 illustrates the HWR for a subband signal of a
trumpet sound at a band with center frequency 2.7 kHz. The
upper two panels show the subband signal in time and frequency
domains. The lowest panel shows the spectrum of the subband

Fig. 4. Upper panel shows the subband signal x (n) at a band with center
frequency 2.7 kHz. The example signal is a trumpet sound with F0 185 Hz. The
middle panels shows the magnitude spectrum of the subband signal, and the
lower panel shows the spectrum after half-wave rectification.

Fig. 5. Upper panel shows compressed and rectified spectra at a few auditory
channels for a trumpet sound (F0 185 Hz). The lower panel shows a summary
spectrum which was obtained by summing over the subbands.

signal after rectification, that is, the spectrum of HWR .
As can be seen, the rectification generates spectral components
at the baseband and on twice the channel center frequency. The
former represent the spectrum of the amplitude envelope of

. It consists of beating components which correspond to
the frequency intervals between the input partials. In the case of
a harmonic sound, the interval corresponding to the F0 usually
dominates.

Fig. 5 illustrates the bandwise magnitude spectra of a
trumpet sound after the within-band compression and recti-
fication, DFT . Note that here
a logarithmic frequency scale is used. The rectified signal of
Fig. 4 appears at the band with center frequency 2.7 kHz. As
can be seen, the rectification maps the contribution of higher
order partials to the position of the F0 and its few multiples
in the spectra. Moreover, the degree to which an individual
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overtone partial is mapped to the position of the fundamental
increases along with . This is because the auditory filters
become wider at the higher center frequencies, and the partials
therefore have more neighbors with which to generate the dif-
ference frequencies (beating) in the amplitude envelope. This is
nice, since organizing the higher partials to their fundamental
is very difficult in polyphonic music. The rectification does this
“automatically,” without the need to resolve individual higher
order partials.

An auditory model allows simulating the pitch perception for
a wide range of signals. For example, let us consider ampli-
tude-modulated white noise. It is known from psychoacoustics
that such a signal will cause a pitch percept corresponding to
the modulation frequency. Fig. 6 shows the bandwise magni-
tude spectra of a white noise signal which was amplitude-modu-
lated with the function , where correspondeds to
185 Hz. As can be seen, the spectrum is noisy at lower subbands,
but at higher bands, the spectrum of the amplitude envelope (as
generated by the HWR) shows a clear peak at 185 Hz, which
is also visible in the summary spectrum in the lower panel.
Although this particular case is trivial to reproduce with other
methods too, auditory models by definition simulate hearing for
a large variety of signals [38], [45].

The spectral components generated around were not
found useful, since these are not guaranteed to match the
harmonic series of the sound, due to nonideal harmonicity. On
the contrary, low-pass filtering the rectified signal so as to reject
the harmonic distortion around twice the center frequency
(here called “distortion spectrum”) was found to improve the
F0 analysis. A difficulty in doing this, however, is that the
passband of the auditory filter overlaps the distortion spectrum
at the lowest channels. The problem can be solved by noting
that HWR can be written as HWR . In
order to achieve a clean suppression of the distortion spectrum
also at the lowest channels, the signal is first full-wave
rectified as , the resulting signal is low-pass
filtered using a cutoff frequency , summed with the original
signal , and finally scaled down by two. In addition to
improving the F0 analysis, this allows the overall system to
be implemented very efficiently as will be explained in the
next section. The signal at channel after the compression,
rectification, and low-pass filtering is denoted by .

C. Efficient Computation of Frequency-Domain Representation

The signals are blocked into frames which are then
Fourier transformed. In more detail, each frame is Hamming
windowed, zero-padded to twice its length, and then the short-
time Fourier transform is applied. The resulting transform at
channel and time frame is denoted by .

The bandwise spectra are raised to power and then summed
to obtain a “summary spectrum”

(7)

This intermediate data representation is used in all subsequent
processing.

Fig. 6. Upper panel shows compressed and rectified spectra at a few audi-
tory channels for an amplitude-modulated noise signal (modulation frequency
185 Hz). The lower panel shows a summary spectrum obtained by summing
over subbands.

To understand why a frequency-domain representation is
computed, let us consider again as an example the summary
ACF of Meddis’s and Hewitt’s model [38] which was men-
tioned in the beginning of Section II. The short-time ACF
estimates within the subbands can be efficiently computed as

IDFT , where IDFT denotes the inverse
Fourier transform, and is the short-time Fourier trans-
form of in time frame , zero-padded to twice its length
before the transform. The summary ACF, in turn, can be com-
puted as IDFT , where .
Note that the spectra can be summed before the IDFT
because the IDFT and summing are linear operations, and their
order can therefore be reversed.

Based on the above discussion, we can see that the summary
ACF representation of Meddis and Hewitt could be calculated
simply using in (7) and by replacing the period detection
module in Fig. 1 with the inverse Fourier transform.2 This is not
what we will do, however, since the intermediate representation

allows a lot of flexibility in designing the periodicity anal-
ysis mechanism, and we will utilize that to make the estimator
more robust in polyphonic signals.

It is clear that computation of the Fourier transforms
at 70 subbands incurs a high computational load. In the fol-
lowing, we describe a technique which reduces this load roughly
by factor 10.

Let us denote one windowed and zero-padded time frame of
by vector and the corresponding compression scaling

factor by [see (5)]. The compressed, rectified, and low-pass
filtered signal can then be written as

(8)

2It should be noted, however, that the IHC model and some other details in
[38] were different from those employed here.
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where is the impulse response of the distortion-suppression
low-pass filter at band , and denotes convolution. Using (8),
the summary spectrum can be written as

DFT

DFT DFT (9)

In practice, the spectra of and are nonoverlapping
in all except few lowest bands, and (9) can be approximated by

DFT

DFT (10)

The benefit of this form is that the first term on the right-hand
side of (10) can be written as

DFT (11)

where is the spectrum of the wide-band input signal
in frame is a normalizing constant, and is a frequency
response obtained by linearly interpolating between the values

defined at the center frequencies . This approximation is
valid between the lowest and the highest subband center fre-
quency, provided that the center frequencies and bandwidths
obey (1) and (2).

It follows that bandwise Fourier transforms need to be com-
puted only for the signals which represent the band-
wise amplitude envelopes. As the bandwidth of these signals is
narrow, the signals are decimated down to the sam-
pling rate 5512.5 Hz before computing the DFTs. This means
significant computational savings since an analysis frame of
2048 samples at 44 100-Hz sampling rate, for example, shrinks
to 256 samples at 5512.5-Hz sampling rate. After the decimation
and the DFT, the calculated bandwise spectra are substituted to
the second term on the right-hand side of (10). The first term is
obtained from (11). This technique significantly improves the
computational efficiency of the auditory model.

D. Periodicity Analysis

As mentioned in the previous section, can be used to
compute the summary ACF by using in (7) and simply
inverse Fourier transforming in each frame as follows:

IDFT (12)

Instead of (12), we will use a periodicity analysis method which
improves the robustness in polyphonic signals and is able to
handle the wide range of pitch values encountered in music.

In the proposed method, the salience, or strength, of a period
candidate is calculated as a weighted sum of the amplitudes of
the harmonic partials of the corresponding F0. More exactly, the

salience of a fundamental period candidate in frame is
calculated as

(13)

where is the partial index, and the function deter-
mines the weight of partial of period in the sum (the weights
will be explained later). The set consists of a range of fre-
quency bins in the vicinity of the th overtone partial of F0 can-
didate , where denotes the sampling rate. More exactly

(14)

where denotes rounding to the nearest integer, and de-
notes spacing between successive period candidates . In the
conventional ACF, , that is, the spacing between funda-
mental period candidates equals the sampling interval. Later in
this section, we will describe an algorithm which allows a very
dense sampling of (small ). This has the consequence that
all the sets in (13) contain exactly one frequency bin, in
which case the nonlinear maximization operation vanishes and

becomes a linear function of , making it analytically
more tractable.

The basic idea of (13) is intuitively appealing since the
Fourier theorem states that a periodic signal can be represented
with spectral components at integer multiples of the inverse
of the period. Indeed, formulas and principles resembling (13)
have been used for F0 estimation by a number of authors,
under different names, and in different variants—although
these have used the DFT spectrum instead of an auditorily
motivated representation. Already in the 1960s and 1970s,
Schroeder introduced the frequency histogram and Noll the
harmonic sum spectrum (see [46, p. 414]). Parsons [47] and de
Cheveigné [24] discuss harmonic selection methods, and more
recently, Walmsley [48] uses the name harmonic transform
for a similar technique. In the time domain, these techniques
can be implemented using a bank of comb filters, where each
filter has its characteristic feedback delay and the energy
at the output of the filter defines the salience. In the auditory
modeling literature, Cariani [49] proposed to use comb filters
to separate concurrent vowels with different F0s. Also, the
strobed temporal integration mechanism of Patterson [50, p.
186] is closely related.

Equation (13) and other comb-filter-like solutions have two
advantages compared to the ACF. First, it is clear that (13) com-
putes the salience of the period using only spectral compo-
nents that are related to the period in question. This improves the
robustness in polyphonic signals, since the spectral components
between the partials have no effect on , which improves the
signal-to-noise ratio (SNR) of the estimation. Second, it is very
difficult to achieve a wide pitch range using the ACF. This is be-
cause any signal containing significant low-frequency compo-
nents shows high correlation for short lags (high frequencies). In
polyphonic signals, the ACF is not robust above about 600 Hz:
it is not able to handle the so-called “spectral pitch.”3 The pro-

3To the author’s knowledge, the best solution so far for normalizing out this
problem is the YIN algorithm by de Cheveigné and Kawahara [51].
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posed salience function (13) behaves robustly for a pitch range
of at least 40 Hz–2.1 kHz and has no theoretical upper limit.

The weights determine the mapping from to
. These have been studied in [32], where the following

parametric form was found:

(15)

Note that is the F0 value corresponding to and that (15)
reduces to if the moderation terms and are omitted.
The terms Hz and Hz are important for
low-frequency partials and for low F0s. The sum in (13) can
be limited to terms, since weights beyond that are
relatively small. As explained in Fig. 5, the higher partials are
mapped to the position of the fundamental and its few multiples
due to the rectification at subbands, and as a consequence, the
entire harmonic series of a sound contributes to the salience.

The form of (15) allows fast computation of the saliences
as follows. First, is filtered using only the denom-

inator of (15), replacing the numerator with unity. This can be
done since the denominator depends only on the frequency of
the partial and not on the period. Then, is computed using
(13), but omitting the weights . Finally, each period

is weighted by the numerator of (15).
It remains to choose the value of in (7). We tested two

values, (magnitude spectrum) and (power spec-
trum), optimizing the parameters and in (15) in both cases
and monitoring the resulting salience functions. The value
led consistently to more reliable analysis results and was there-
fore chosen.

Varying is closely related to the generalized ACF [52], de-
fined as

IDFT DFT (16)

where denotes the signal under analysis. The conventional
ACF is obtained with . As discussed by Tolonen and Kar-
jalainen in [27], choosing a proper value for improves the re-
liability and noise robustness of the periodicity analysis. They
suggest using the value 0.67.

E. Iterative Estimation and Cancellation

The global maximum of the function in frame is a
robust indicator of one of the correct F0s in polyphonic signals.
However, the second or third-highest peak is often due to the
same sound and located at that is half or twice the position of
the highest peak. Therefore, we employ an iterative technique
where each detected sound is canceled from the mixture before
deciding the next F0. A similar idea has been previously utilized
for example in [15], [24], and [33].

Let us first look at an efficient way of finding the maximum of
. Here, we omit time indices for simplicity. Somewhat sur-

prisingly, the global maximum of and the corresponding
value of can be found with a fast algorithm that does not re-
quire evaluating for all . This is another motivation for
the iterative estimation and cancellation approach where only
the maximum of is needed at each iteration.

Let us denote the minimum and maximum fundamental pe-
riod of interest by and , respectively, and the required
precision of sampling by . A fast search of the maximum

of can be implemented by repeatedly splitting the range
into smaller “blocks,” computing an upper bound

for the salience within each block , and continuing
by splitting the block with the highest . Let us denote
the number of blocks by and the upper and lower limits of
block by and , respectively. Index of the highest
salience block is denoted by . The algorithm starts with
only one block with upper and lower limits at and ,
and then repeatedly splits the best block into two halves, as de-
tailed in Algorithm 1.4 As a result, it gives the maximum of
and the corresponding value of .

On lines 13 and 14 of the algorithm, in order to obtain an
upper bound for the salience within range ,
(13) is evaluated using the given values for , and .
Splitting a block later on can only decrease the value of
when computed for the new block-halves. Note that the best
block has to be resought after each splitting in order to guarantee
convergence to the global maximum.

In addition to being fast to compute, Algorithm 1 allows
searching the maximum of with a very high accuracy, that
is, with a high precision of the found period .

The iterative estimation and cancellation goes as follows.
1) A residual spectrum is initialized to equal ,

and a spectrum of detected sounds to zero.
2) A fundamental period is estimated using and Al-

gorithm 1. The maximum of determines .
3) Harmonic partials of are located in at bins

. The magnitude spectrum of the Hamming
window is translated to these frequencies, weighted by

, and added to .
4) The residual spectrum is recalculated as

where controls the amount of the subtraction.
5) If there are sounds remaining in , return to Step 2.

4In practice, it is even more efficient to start with [(� � � )=� ]
blocks because this narrows the ranges � in (14).
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TABLE I
SUMMARY OF THE PARAMETERS OF THE PROPOSED METHOD

Note that the purpose of the cancellation is ultimately to sup-
press harmonics and subharmonics of in . This should be
done in such a way that the residual is not corrupted too much
to detect the remaining sounds at the coming iterations. These
conflicting requirements are effectively met by weighting the
partials of a detected sound by in Step 3 before adding
them to . In practice, this means that the higher partials
are not entirely canceled from the mixture since

.
When the number of sounds in the mixture is not given, it

has to be estimated. This task, polyphony estimation, is accom-
plished by stopping the iteration when a newly detected sound

at iteration no longer increases the quantity

(17)

where was found empirically. Note that would
be monotonically decreasing for (average of :s)
and monotonically increasing for (sum). The value of

maximizing (17) is taken as the estimated polyphony .
Table I summarizes the parameters of the proposed method.

III. RESULTS

Simulation experiments were carried out to evaluate the accu-
racy of the proposed method in analyzing polyphonic music and
multiple-speaker speech signals. The results are compared with
two reference methods [27] and [33], which have been shown to
be quite accurate and for which reliable implementations were
available. Also, we discuss alternative configurations of the pro-
posed system where either 1) the auditory model is replaced
with a DFT-based analysis front-end, or 2) the iterative estima-
tion and cancellation mechanism is replaced with a joint esti-
mator.

A. Reference Methods

The first reference method, denoted by “TK,” has been pro-
posed by Tolonen and Karjalainen in [27]. The authors used it
to analyze mixtures of music and speech sounds. The method is
motivated by an auditory model but divides an input signal into
two channels only, below and above 1 kHz. An implementation
was carefully prepared based on the reference, and the original
code by the authors was used in the warped linear prediction
part of the algorithm.

The second reference method, denoted by “AK,” was pro-
posed by the present author in [33] and is based on spectral
techniques. The method was originally designed for polyphonic
music transcription.

Two alternative configurations of the proposed method are
used in the evaluations in order to investigate the importance
and possible drawbacks of the described techniques. The first
configuration, denoted by “alt-DFT,” allows us to study the role

of the auditory model. It is otherwise identical to the proposed
method but does not apply half-wave rectification at the sub-
bands (see Section II-B). As a result, the auditory filterbank
does not need to be calculated at all, but is obtained from
(11), where the compression coefficients were computed
from the Fourier spectrum. All parameters of the system were
separately optimized for this configuration. Another configura-
tion, denoted by “alt-JOINT,” replaces the iterative estimation
and cancellation with an algorithm where all F0s are estimated
jointly. This allows us to investigate how the iterative search
strategy affects the results. The joint estimator has been de-
scribed in [32] and is not detailed here.

B. Results for Music Signals

Test cases for musical signal analysis were obtained by
mixing recorded samples from musical instruments. The
acoustic material consisted of samples from the McGill Uni-
versity Master Samples collection, the University of Iowa web
site, IRCAM Studio Online, and of independent recordings for
the acoustic guitar. There were altogether 2842 samples from
32 musical instruments, comprising brass and reed instruments,
strings, flutes, the piano, the guitar, and mallet percussions.
Semirandom sound mixtures were generated by first allotting
an instrument and then a random note from its playing range,
restricting the pitch between 40 Hz and 2.1 kHz when a 93-ms
analysis frame was used and between 65 Hz and 2.1 kHz when
a 46-ms frame was used. This was repeated to get the desired
number of sounds which were mixed with equal mean-square
levels. Varying the relative levels would make the task even
harder, but this was not tested. One thousand test cases were
generated for mixtures of one, two, four, and six sounds. One
analysis frame immediately after the onset of the sounds was
given to the multiple-F0 estimators. The onset of a sound was
defined to be at the time where the waveform reached of
its maximum value over the beginning 200 ms.

For the reference method TK, the test samples were limited
below 530 Hz in pitch (2.1 kHz for the other methods), because
the accuracy of the method degrades rapidly beyond that. This
seems to be due to the limitations of ACF for high F0s as dis-
cussed in Section II-D.

Fig. 7 shows F0 estimation results of the proposed and the
reference methods in 46- and 93-ms analysis frames. Here the
number of F0s to extract, the polyphony, was given as a side-in-
formation to the estimators: we will evaluate the polyphony es-
timation separately. Two different error rates are shown. Mul-
tiple-F0 estimation rates (black bars) were computed as the per-
centage of all F0s that were not correctly detected in the input
signals. In predominant-F0 estimation (white bars), only one F0
in the mixture was being estimated, and it was defined to be cor-
rect if it matched the F0 of any of the component sounds. A cor-
rect F0 estimate was defined to deviate less than 3% from the
reference F0, making it “round” to a correct musical note.

As can be seen, the proposed method outperforms the
reference methods TK and AK clearly in all polyphonies. In-
terestingly, the configuration alt-DFT performs almost equally
well in these clean, wide-band signals. This would indicate that
music signals that contain no drums can be processed quite
well without resorting to the use of an auditory model. This is
because most of the energy of the musical sounds is at their low
harmonics, for which the bandwise nonlinearity (rectification)
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Fig. 7. Multiple-F0 estimation (top) and predominant-F0 estimation (bottom)
results in 46- and 93-ms analysis frames. The number of concurrent sounds
varied from 1 to 6. Reading left to right, each stack of six thin bars corresponds
to the error rates of (a) proposed method, (b) reference TK, (c) reference AK,
(d) configuration alt-DFT, and (e) configuration alt-JOINT.

is less important from the F0 analysis viewpoint. Concerning the
iterative search procedure, in turn, the configuration alt-JOINT
does not perform better in multiple-F0 estimation despite of
being considerably more complex computationally (see [32]).
In predominant-F0 estimation, the joint estimator is better in
choosing the most reliable among the estimates that it has.

Fig. 8 compares the robustness of the proposed method and
the configuration alt-DFT, when only a part of the entire spec-
trum can be used for F0 estimation. This can be the situation for
example when a noise source (such as drums) occupies the other
bands. The upper panels show error rates for a high-pass-filtered
signals. Four cutoff frequencies, 250 Hz, 500 Hz, 1 kHz, and
2 kHz, were applied, and the results are averaged over these.
The error rates are shown as a function of F0s, which vary from
5.5 octaves below the cutoff to 2.5 octaves above the cutoff fre-
quency. The upper-left panel shows results for isolated sounds
and the upper-right panel for two-sound combinations. The pro-
posed method is significantly more robust than the alt-DFT con-
figuration: for monophonic sounds, F0 estimation can be per-
formed in about 90% of cases even when only partials four
octaves above the fundamental are present. In brief, the audi-
tory model-based method is clearly better in utilizing the higher
order overtones of a harmonic sound. This is due to the rec-
tification applied at subbands as explained around Fig. 5. In
two sound combinations, the robustness difference between the
methods is still clear, although often the estimation is confused
by the other sound, especially if it has many strong partials at
the passband.

The lower panels of Fig. 8 show F0 estimation results when
only one-octave band of the signal is used. The lower boundary
of the band was located at the above-mentioned four positions,
and the results are averaged over these. F0 values at the -axis
are expressed in relation to the lower edge of the band. As ex-
pected, when the fundamental partial of the sound is within the

Fig. 8. Error rates for high-pass filtered (top) and bandpass filtered signals
(bottom). The left panels show results for isolated sounds and right panels for
two-sound combinations. The errors are shown as a function of the F0, expressed
in relation to the passband’s lower edge. The solid line shows results for the pro-
posed method and dashed line for the configuration alt-DFT.

Fig. 9. F0 estimation results in varying levels of wide-band pink noise. The left
and right panels shows error rates in 46- and 93-ms analysis frames, respectively.

passband (F0 between octaves 0 and 1 in the figure), errors are
seldom made. On the other hand, F0 estimation beyond the band
is hopeless since all the partials are filtered out. Again, the audi-
tory model-based method is significantly more robust than the
alt-DFT configuration.

Fig. 9 shows F0 estimation results in varying levels of wide-
band (50 Hz–10 kHz) pink noise. As discussed in [33], this noise
type is the most disturbing for F0 estimation, as compared with
same levels of white noise or drum sounds. The SNR is here
defined as the ratio between the noise and the sum of the musical
sounds in the analysis frame. Thus, the SNR from the viewpoint
of an individual sound is much worse in higher polyphonies.

Fig. 10 illustrates the results of estimating the number of con-
current sounds in a 93-ms analysis frame. The asterisk indicates
true polyphony in each panel, and the bars show a histogram of
the estimates. The estimation can be done only approximately,
and it seems that more than one analysis frame would be needed
to do it more accurately.
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Fig. 10. Bars show histograms of polyphony estimates for the proposed method
and a 93-ms analysis frame. The asterisks indicate the true polyphony (1, 2, 4,
and 6, from left to right).

C. Results for Speech Signals

Speech signals were obtained from the CMU ARCTIC data-
base of Carnegie Mellon University [53]. We used a total of
4 1132 recorded utterances from two male and two female
U.S. English speakers. Multiple-speaker speech signals were
simulated by mixing signals from the database. The mixed sig-
nals were allotted independently from the database, however en-
suring that the same speaker did not occur twice in a mixture.
The root mean square levels of the signals were normalized over
the entire utterance before mixing, and the mixture signals were
truncated according to the shortest utterance. Two hundred inde-
pendently randomized test cases were generated for one-, two-,
and four-speaker mixtures.

Reference F0 curves were obtained by analyzing each ut-
terance in isolation using the Praat program [54]. The CMU
ARCTIC database includes pitch-marks extracted from the elec-
troglottogram (EGG) signals using the CMU Sphinx program,
but no hand corrections had been made on these, and especially
the voicing information was found very unreliable. Therefore,
the Praat output is used as the “ground truth.”

To ensure that the Praat estimates were reasonably reliable,
we compared them with the pitch-marks provided in the data-
base, considering only segments where both sources claimed the
signal to be voiced. As a result, gross discrepancies ( 20% dif-
ference in F0) were found in 1.9% of the frames, and the stan-
dard deviation of the remaining fine errors was 27 cents (there
are 1200 cents in an octave).

In all the results to be presented, the F0s were estimated in-
dependently in each analysis frame, without attempting to track
a continuous pitch curve over the utterances.

Table II shows results for single-speaker signals (isolated
utterances) using the proposed method, reference TK, and the
alt-DFT configuration. The reference method AK performs
poorly in short analysis frames and is therefore not used here.
Gross error rates were computed as the percentage of time
frames where the estimate differed more than 20% from the
Praat reference. Fine errors were computed for the remaining
frames as the standard deviation of the difference between the
estimate and the Praat references, measured in cents. Only
voiced frames were processed: voicing detection was not
implemented. Both the auditory model-based and the alt-DFT
configuration perform well, within the limits of Praat’s relia-
bility.

Fig. 11 shows the gross error rates for multiple-speaker
speech signals. Estimating the number of speakers was not
attempted, but the estimators were informed about the number
of voiced speakers in each frame, and only this amount of F0s

TABLE II
RESULTS FOR SINGLE-SPEAKER SIGNALS IN 32- AND 64-ms FRAMES

Fig. 11. Gross error rates for one, two, and four-speaker signals using the pro-
posed method, the reference TK, and the alt-DFT configuration. The left and
right panels correspond 32- and 64-ms analysis frames, respectively.

Fig. 12. Error rates for high-pass-filtered speech signals. The solid line rep-
resents the proposed auditory model-based method, and the dashed line the
alt-DFT configuration.

were extracted.5 Here, the reference method TK performs much
better than for musical sounds, although still being inferior to
the proposed method. The auditory model-based method and
the alt-DFT configuration perform approximately equally.

Fig. 12 shows results for high-pass-filtered speech signals,
simulating the case that the lower portions of the spectrum
are missing (defective audio reproduction) or corrupted by
noise. The left panel shows results for individual utterances
and the right panel for two-speaker mixtures. The proposed
auditory model-based method degrades gracefully as a function
of the cutoff frequency, whereas the alt-DFT configuration gets
confused (presumably by formants) as soon as the lowest and
strongest partials are dropped.

D. Discussion

For practical reasons, only two reference methods (TK
and AK) could be used above. Direct comparison with other
methods is difficult since the experimental conditions vary
greatly. However, the method AK has been compared to human

5In principle, the salience values could be used for voicing estimation [cf.
(17)], but further optimization would be required for speech signals.
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performance in [33], and was found to perform very similarly
with trained human musicians in musical interval and chord
identification tests (using 190-ms frame for the method and 1 s
for humans). The proposed method achieves similar or better
accuracy in twice shorter analysis frames. In multiple-speaker
pitch estimation, Wu, Wang, and Brown used the method TK
as a reference in their recent work [25]. They too report clear
improvement over the method TK in simulations. The experi-
mental setup was quite different from here and prevents direct
comparison of error rates. Single-speaker pitch estimation was
recently studied by de Cheveigné and Kawahara [51]. They
report approximately 1% error rate for the best method. Here
Praat was used to produce the ground truth pitch tracks, which
does not allow accurate error measurement in the single-speaker
case. However, the inaccuracies in the ground truth are quite
harmless in multiple-speaker pitch estimation where the error
rates are still relatively large.

IV. CONCLUSION

An auditory model based F0 estimator was proposed for poly-
phonic music and speech signals. A series of techniques was de-
scribed to make the auditory model and the subsequent period-
icity analysis computationally efficient and therefore practically
appealing.

In the simulations, the method outperformed clearly the two
reference methods TK and AK. Especially, both theoretical and
experimental evidence was presented which shows that an au-
ditory model-based F0 estimator is good at utilizing the higher
order overtones of a harmonic sound. This is due to the non-
linearity applied at the subbands of a peripheral hearing model,
which is difficult to reproduce in pure time or frequency do-
main methods. The improved processing of higher harmonics is
particularly important in situations where the entire wide-band
signal is not available due to bad audio reproduction, or noise
sources occupying parts of the audible spectrum. When ana-
lyzing clean, wide-band signals, the auditory model did not have
a clear advantage over the alt-DFT configuration, although it
still performed very well. This seems to be due to the fact that
most of the energy of music and speech sound is at the lowest
partials, for which the bandwise nonlinearity is less important.

Robustness of the proposed pitch estimator for narrowband
signals can be utilized for example in processing noise-contam-
inated speech signals. Time-frequency regions representing the
clean speech can be located by processing the signal within sub-
bands and by using the bandwise pitch values and their saliences
as cues for speech separation. The properties of the proposed es-
timator were not fully exploited in the present work, which fo-
cused on processing individual time frames only. For example,
the SNRs of different bands could be estimated and the sub-
bands weighted accordingly in (7). In the future work, more ef-
fort is put on using the longer-term context in associating certain
time–frequency regions to certain instruments/speakers or noise
sources.

The proposed method has also been used for feature extrac-
tion in transcribing realistic musical recordings. The work has
been reported in [55] and audio examples can be found at http://
www.cs.tut.fi/sgn/arg/matti/demos/melofrompoly/.

APPENDIX

This Appendix describes the design of the two resonators (3)
and (4) that are used to approximate the gammatone filter. The
gammatone filter is defined by its impulse response as

(18)

where is the center frequency of the filter,
ensures unity response at the center frequency, and denotes
the gamma function. Choosing leads to a shape of the
power response that matches best with that found in humans.
The parameter controls the ERB bandwidth of
the filter [56, p. 256]. The phase parameter has no importance
and a zero value can be used. We did not try to simulate any
particular value.

In the following, we describe the calculation of parameters
, and in (3) and (4) assuming that the number of

resonator sections to be applied in a cascade is given. Choosing
and the optimal combination of the two resonator types can be

done by trial and error since the number of alternatives is small.
It was found that a cascade of four resonators, two of each type,
leads to the best result.

Let us first consider the center frequency of Resonator 1.
Power response of (3), after some straightforward algebra, can
be written as

(19)

where

(20)

(21)

Here, we use angular frequencies for simplicity,
denoting the sampling rate. The center frequency of the filter
can be determined by differentiating with respect to and
setting the result to zero. This yields

(22)

Therefore, the desired center frequency is obtained by substi-
tuting in (3), where

.
The power response of Resonator 2 is obtained by replacing

the numerator of (19) by . Interestingly, the center fre-
quency of this resonator obeys

(23)

Next, let us consider the resonator bandwidths. Provided that
resonators are applied in a cascade, we let each resonator

reach dB level at a point where the gammatone filter
reaches 3-dB level, in order that cascade of filters would
have the desired bandwidth.
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The 3-dB bandwidth of the gammatone filter (18) can be cal-
culated as [56]

(24)

A sufficiently accurate approximation of the bandwidth of the
proposed resonators is obtained by assuming that only the
closest pole affects their power response in the vicinity of the
center frequency (see [57, p. 88]). As a result, the value of
which leads to dB bandwidth of is obtained for
both resonators as

(25)

Finally, the scaling factors and in (3) and (4) are

(26)

(27)

They were obtained by evaluating the power response at the
filter’s center frequency and requiring that to equal unity.
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