

Distributed Video Coding (DVC)

Frederic Dufaux LTCI - UMR 5141 - CNRS TELECOM ParisTech frederic.dufaux@telecom-paristech.fr

SI350, May 28, 2013

- Context and background
- Theoretical foundations
- Distributed Video Coding (DVC)
- Multiview video coding
- Conclusions

Context and Background

副務部 Video Coding Standards

- Compression
 efficiency
 - Typically 50% gain every 5 years
 - Adding more efficient coding tools / modes to the familiar predictive video coding architecture
 - Functionalities such as scalability, error resilience, interactivity, low complexity, random access, ...

Video Compression Standards

副 多 聞Conventional Predictive Coding

- Exploitation of the source correlation at the encoder
- High coding efficiency
- Rigid partition of complexity
 - High complexity encoder
 - Low complexity decoder
 - More appropriate for a broadcast model (downlink)
- Fragile in the presence of packet/frame losses
 - Drift due to prediction loop in encoder

Base of Up-Link Applications

- High-resolution wireless digital video cameras
- Multimedia smartphones and PDA's
- Low-power video sensors and surveillance cameras
- Challenges
 - High coding efficiency
 - Flexible partition of complexity
 - Low complexity encoder
 - High complexity decoder
 - Robustness to packet/frame losses
 - Low latency

Theoretical Foundations

國務部 Coding of Dependent Sources

Base Distributed Coding of Dependent Sources

副務部 Slepian-Wolf Theorem

Slepian-Wolf with Decoder Side Information

Slepian-Wolf with Decoder Side Information

- Y is a guess of X
 - Better guess results in better coding efficiency
- Y is a noisy version of X with channel errors Δ
 - Encoder generates parity bits to protect against channel errors
 - Decoder performs error-correcting decoding

• Extension to lossy coding

- No rate-distortion performance loss
 - Gaussian statistics and MSE distortion
 - Later on: only innovation X-Y needs to be Gaussian

回邊間 Opportunities

- Opportunity to re-invent video coding
 - Forget the past deterministic approach
 - Adopt a new statistical mind set
- Flexible complexity partition
- Intrinsic joint source-channel coding robust to errors
- Codec independent scalability
- Multiview coding exploiting correlation between views
- Challenge: achieve state-of-the-art coding performance

Distributed Video Coding (DVC)

Application of DVC to low complexity mono-view video

Hybrid video coding

Distributed video coding

Application of DVC to low complexity mono-view video

- Key frames are coded as Intra frames
- For WZ frame only parity bit are coded
 - Pixel domain coding
 - Transform domain coding
 - No prediction! (KF are not supposed to be known)
- Side information is needed to reconstruct WZFs
 - SI amounts to an estimation of the current WZF, based on information available at the decoder
- Orders of magnitudes simpler than INTRA (10 times) and INTER (100 times) coding

- Sequences divided into Group of Pictures (GOP)
 - First frame of GOP is Intra coded (key frame)
 - Remaining frames encoded using distributed coding (WZ frames)
- Pixel-domain and transform-domain
- Quantized values split into bitplanes which are Turbo encoded
- Decoder
 - Motion compensated interpolation/extrapolation to generate SI
 - Parity bits of WZ frames requested via feedback channel
 - SI and parity bits using in the turbo decoder to reconstruct bitplanes

副務認識 Image interpolation in DVC

- Problem:
 - Given images $I_{k\text{-}1}$ and $I_{k\text{+}1},$ find the best estimation of image I_k
- Typical Side Information generation problem
- Current solutions use block-matching motion estimation and compensation
- Looking for backward and forward motion vector fields

Image interpolation in DVC: 習習習習 the DISCOVER algorithm

Image interpolation in DVC: 習習習習 the DISCOVER algorithm

I_{k-1}

I_{k+1}

$$d(\mathbf{v}) = d\left(B_{k-1}^{(\mathbf{p})}, B_{k+1}^{(\mathbf{p}+\mathbf{v})}\right) \qquad \mathbf{v}^* = \arg\min_{\mathbf{v}} d(\mathbf{v})$$

The DISCOVER algorithm: Split of monodirectional vectors

The DISCOVER algorithm:

The DISCOVER algorithm: Refinement of bidirectional vectors

The DISCOVER algorithm:StateRefinement and Median Filtering

- Split MVs are further refined with a block matching in a small window near their value
- Median filtering is performed to enforce regular MVs
- The two motion-compensated images are added to produce the Side Information

The DISCOVER algorithm: 圖 ※ 聞 Sample interpolated image

29

Chrs

PSNR: 26.4 dB

- Spatial resolution: QCIF.
- Temporal resolution: 15 Hz (i.e. 7.5 Hz for the WZ frames with GOP=2).
- **GOP** size: 2, 4 and 8.

8	0	0		32	8	0	0		32	8	4	0		32	16	8	4
0	0	0		8	0	0	0		8	4	0	0		16	8	4	0
0	0	0		0	0	0	0		4	0	0	0		8	4	0	0
0	0	0		0	0	0	0		0	0	0	0		4	0	0	0
(;	a)				(1))				(0	c)				(0	1)	
16	8	4		64	16	8	8		64	32	16	8		128	64	32	16
8	4	4		16	8	8	4		32	16	8	4		64	32	16	8
4	4	0		8	8	4	4		16	8	4	4		32	16	8	4
4	0	0		8	4	4	0		8	4	4	0		16	8	4	0
	8 0 0 ({ 16 8 4 4	8 0 0 0 0 0 0 0 0 0 (a) 16 8 4 4 4 4 0	8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 16 8 4 8 4 4 4 4 0 4 0 0	8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 16 8 4 8 4 4 4 4 0 4 0 0	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 16 8 4 4 4 0 4 0 0 8 4 4	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 16 8 4 4 4 0 4 0 0 8 4 4 4 0 0 8 4 4 4 0 0 8 4 4 0 0 0 16 8 4 4 0 0 8 4 4 0 0 <td< td=""><td>8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 16 8 4 4 4 0 4 0 0 8 4 4 4 0 0 8 4 4 4 0 0</td><td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td><td>$\begin{array}{c ccccccccccccccccccccccccccccccccccc$</td><td>8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 16 8 4 16 8 8 16 8 8 16 8 8 16 8 8 16 8 4 16 8 4 16 8 4 16 8 4 16 8 4</td></td<>	8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 16 8 4 4 4 0 4 0 0 8 4 4 4 0 0 8 4 4 4 0 0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 16 8 4 16 8 8 16 8 8 16 8 8 16 8 8 16 8 4 16 8 4 16 8 4 16 8 4 16 8 4

(e)

(f)

(g)

(h)

VISNET II DVC versus H.264/AVC:

Hall Sequence QCIF@15Hz (all frames)

Coastguard Sequence QCIF@15Hz (all frames)

33

TELECOM Paristiech

VISNET II DVC versus H.264/AVC: 圖 瓷 節 Soccer

Soccer Sequence QCIF@15Hz (all frames)

Bitrate (kb/s)

- WZ frame encoding complexity is approximately 1/6 of the H.264/AVC Intra or H.264/AVC No Motion encoding complexity
- However, DVC decoding complexity is much higher (some orders of magnitude) than H.264/AVC Intra or H.264/AVC No Motion decoding complexity
- DVC decoding complexity is strongly dependent on the quality of SI
- Substantial on-going work on fast and parallel implementations of channel decoding algorithms

副選続 Robust Transmission

- Appealing for transmission over error-prone channels
 - Statistical framework rather than a deterministic approach
 - Absence of a prediction loop in the codec
- Decoding is successful, even in the presence of transmission errors, as long as the SI is within the noise margin of the encoded parity bits
- Scalable schemes robust to packet losses both in the base and enhancement layers
- Increase the robustness of standard encoded video by adding redundant information encoded according to distribute coding principles

副選訳 Robust Transmission

- DVC
 - WZ frames: hybrid spatial and temporal error concealment
 - Key frames: JM error concealment
- H.264/AVC
 - JM 11.0
 - Flexible Macroblock Ordering (FMO)
 - JM error concealment
- With/without feedback channel
 - Automatic Repeat reQuest (ARQ)
- Packet Loss Rate
 - 5%, 10%, 20%, error patterns from VCEG

Foreman, no feedback channel

TELECOM ParisTech

Hall Monitor, no feedback channel

Foreman, feedback channel

CNTS 40

Hall Monitor, feedback channel

41

Multiview Video Coding

副選択 Multiview video coding

- Emerging problem
- Camera arrays, stereoscopic video
- Inter-view correlation and disparity estimation
- Temporal correlation and motion estimation
- Huge complexity
 → DVC techniques
- Conceptually close to the monoview case
 - Key frames and Wyner-Ziv frames

副選択 Multi-View Video Coding

- MVC
 - Extension of AVC
 - Block-based predictive coding along time and across views
 - Very complex encoder
 - Cameras have to communicate

副選択 Multi-View Distributed Video Coding

- DVC
 - Low complexity / lower power consumption encoder
 - Exploit inter-view correlation without communication between cameras

Multiview video coding: possible SEM schemes

Temporal Interpolation

Time

Multiview video coding: possible schemes

Time

Multiview video coding: possible SEM schemes

Interview and Temporal Interpolation

Time

副選択 Inter-View Side Information

- Disparity Compensation View Prediction (DCVP)
 - Straightforward extension of MCTI
 - Disparity vectors are estimated between views
 - Interpolation at mid-point to generate SI

副務部 Inter-View Side Information

- Homography
 - Homography relating the central view to side views
 - Assumption that the scene is planar
 - Parameters have to be computed once

副選訳 Inter-View Side Information

- View Morphing (VM)
 - Fundamental matrix: map a point in one camera and its epipolar line in the other camera
 - Requires at least seven point correspondences

副務部 Inter-View Side Information

- View Synthesis Prediction (VSP)
 - Camera calibration
 - Intrinsic and extrinsic camera parameters
 - Depth information

副務認知 Inter-View Side Information

- Multi-View Motion Estimation (MVME)
 - Compute motion vectors in a side view
 - Apply them to current view (WZ frame) using disparity vectors

副邊間 Inter-View Temporal Side Information

- Multi-View Motion Estimation (MVME)
 - 8 different possible paths
 - Weighted average using reliability measure (MSE or SAD of matching error)

Application to IMVS: Interactive Multiview Video Streaming

Application to IMVS: Interactive Multiview Video Streaming

Time

57

Cn

Application to IMVS: Interactive Multiview Video Streaming

CNTS 58

Conclusions

Most Promising Applications

Application	Flexible allocation of codec complexity	Improved error resilience	Codec independent scalability	Exploitation of multi- view correlation
Wireless video cameras	Х	Х		
Wireless low-power surveillance	Х	Х	Х	Х
Mobile document scanner	Х	Х		
Video conferencing with mobile devices	Х	Х		
Mobile video mail	Х			
Disposable video cameras	Х			
Visual sensor networks	Х	Х	Х	Х
Networked camcorders	х	х		х
Distributed video streaming	Х	Х	Х	
Multiview video entertainment	Х			Х
Wireless capsule endoscopy	Х	Х		
CITS 60				TELECOM Participada Martiniada

- DVC allows very low-complexity video coding
 - In theory without loss in RD performance
 - In practice some loss seems unavoidable
- DVC allows graceful degradation in unreliable environment
 - Joint source/channel coding naturally applies to the channel coding used in DVC
- DVC enables MVC with low computational power
 - Distributed exploitation of inter-view correlation

副選択 Further reading

- J. Slepian and J. Wolf, "Noiseless Coding of Correlated Information Sources", IEEE Trans. on Information Theory, vol. 19, no. 4, pp. 471-480, July 1973.
- A. Wyner and J. Ziv, "The Rate-Distortion Function for Source Coding with Side Information at the Decoder", IEEE Trans. on Information Theory, vol. 22, no. 1, pp. 1-10, January 1976.
- R. Puri, A. Majumdar, and K. Ramchandran, "PRISM: A Video Coding Paradigm with Motion Estimation at the Decoder", IEEE Transactions on Image Processing, vol. 16, no. 10, pp. 2436-2448, October 2007.
- B. Girod, A. Aaron, S. Rane and D. Rebollo-Monedero, "Distributed Video Coding", Proceedings of the IEEE, vol. 93, no. 1, pp. 71-83, January 2005.
- C. Guillemot, F. Pereira, L. Torres, T. Ebrahimi, R. Leonardi and J. Ostermann, "Distributed Monoview and Multiview Video Coding", IEEE Signal Processing Magazine, vol. 24, no. 5, pp. 67-76, September 2007.
- P.L Dragotti and M. Gastpar, Distributed Source Coding: Theory, Algorithms and Applications, Academic Press, February 2009.
- F. Dufaux, W. Gao, S. Tubaro, A. Vetro, "Distributed Video Coding: Trends and Perspectives", EURASIP Journal on Image and Video Processing, (review article, special issue on DVC), vol. 2009, Article ID 508167, doi:10.1155/2009/508167, 2009.
- J. Ascenso, C. Brites, F. Dufaux, A. Fernando, T. Ebrahimi, F. Pereira and S. Tubaro, "The VISNET II DVC Codec: Architecture, Tools and Performance", in Proc. 18th European Signal Processing Conference (EUSIPCO 2010), Aalborg, Denmark, August 2010.
- F. Pereira, L. Torres, C. Guillemot, T. Ebrahimi, R. Leonardi and S. Klomp, "Distributed Video Coding: Selecting the most promising application scenarios", Signal Processing: Image Communication, Vol. 23, no. 5, pp. 339-352, June 2008.

