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Context and Background
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• Compression 
efficiency 
– Typically 50% gain 

every 5 years
– Adding more efficient  

coding tools / modes 
to the familiar 
predictive video 

Video Coding Standards
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predictive video 
coding architecture

– Functionalities such 
as scalability, error 
resilience, 
interactivity, low 
complexity, random 
access, … 
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• Exploitation of the source correlation at the encoder

• High coding efficiency
• Rigid partition of complexity

– High complexity encoder

Conventional Predictive Coding
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– High complexity encoder
– Low complexity decoder
– More appropriate for a broadcast model (downlink) 

• Fragile in the presence of packet/frame losses
– Drift due to prediction loop in encoder



• High-resolution wireless 
digital video cameras

• Multimedia smartphones and 
PDA’s

• Low-power video sensors 
and surveillance cameras

• Challenges

New Class of Up-Link Applications
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• Challenges
– High coding efficiency
– Flexible partition of complexity

– Low complexity encoder
– High complexity decoder

– Robustness to packet/frame losses
– Low latency

Heavy 
encoder

Light 
decoder

light

Transcoding



Theoretical Foundations
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Coding of Dependent Sources
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Distributed Coding of Dependent Sources
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Ry

Separate Decoding

Slepian-Wolf Theorem
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Rx

H(X)

H(Y)



Ry

Separate Decoding

     Rx ≥ H(X|Y)

     Ry ≥ H(Y|X)

Rx+Ry ≥ H(X,Y)

Slepian-Wolf Theorem
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Rx

H(X)

H(Y)

H(X|Y)

H(Y|X)

Rx+Ry = H(X,Y)

Joint Decoding
Residual error probability tends 

towards 0 for long sequences



Ry

Separate Decoding

Slepian-Wolf with Decoder Side Information
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Rx

H(X)

H(Y)

H(X|Y)

H(Y|X)

Rx+Ry = H(X,Y)

Joint Decoding



• Y is a guess of X 

Slepian-Wolf with Decoder Side 
Information
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• Y is a guess of X 
– Better guess results in better coding efficiency

• Y is a noisy version of X with channel errors ∆
– Encoder generates parity bits to protect against channel 

errors
– Decoder performs error-correcting decoding



• Extension to lossy coding
Wyner-Ziv Theorem
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• No rate-distortion performance loss
– Gaussian statistics and MSE distortion
– Later on: only innovation X-Y needs to be Gaussian



• Opportunity to re-invent video coding 
– Forget the past deterministic approach
– Adopt a new statistical mind set

• Flexible complexity partition
• Intrinsic joint source-channel coding robust to errors
•

Opportunities
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• Intrinsic joint source-channel coding robust to errors
• Codec independent scalability
• Multiview coding exploiting correlation between 

views

• Challenge: achieve state-of-the-art coding 
performance



Distributed Video Coding
(DVC)
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(DVC)



Application of DVC to low complexity 
mono-view video

� Hybrid video coding

I P/B P/B P/B I P/B
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KF WZ WZ WZ KF WZ

� Distributed video coding



Application of DVC to low complexity 
mono-view video

• Key frames are coded as Intra frames

• For WZ frame only parity bit are coded
– Pixel domain coding
– Transform domain coding
– No prediction! (KF are not supposed to be known)
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– No prediction! (KF are not supposed to be known)

• Side information is needed to reconstruct 
WZFs
– SI amounts to an estimation of the current WZF, 

based on information available at the decoder
• Orders of magnitudes simpler than INTRA (10 

times) and INTER (100 times) coding



Pixel-domain and Transform-domain 
Architectures

Direction scientifique19



• Sequences divided into Group of Pictures (GOP)
– First frame of GOP is Intra coded (key frame) 
– Remaining frames encoded using distributed coding (WZ 

frames)
• Pixel-domain and transform-domain
• Quantized values split into bitplanes which are 

Turbo encoded

Pixel-domain and Transform-domain 
Architectures
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Turbo encoded
• Decoder

– Motion compensated interpolation/extrapolation to 
generate SI

– Parity bits of WZ frames requested via feedback channel
– SI and parity bits using in the turbo decoder to reconstruct 

bitplanes



Image interpolation in DVC

• Problem:
– Given images Ik-1 and Ik+1, find the best estimation of 

image Ik

• Typical Side Information generation problem
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• Current solutions use block-matching motion 
estimation and compensation

• Looking for backward and forward motion 
vector fields



Image interpolation in DVC: 
the DISCOVER algorithm
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Ik-1 Ik+1Ik



Image interpolation in DVC: 
the DISCOVER algorithm

Low Pass
Filter

vB
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Low Pass
Filter

Forward
Motion

Estimation

Bidirectional
Motion

Estimation

Weighted
Median
Filter

Ik-1

Ik+1

v
vB

vF



The DISCOVER algorithm: 
Forward ME

Ik-1 Ik+1
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Ik-1 Ik+1



The DISCOVER algorithm: 
Split of monodirectional vectors
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p1

p2

p

The DISCOVER algorithm: 
Split of monodirectional vectors

vB(p1) = -v(p1) /2
vF(p1) =  v(p1) /2
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p3

p4

vF(p1) =  v(p1) /2

vB(p2+v(p2) /2) = -
v(p2) /2
vF(p2+v(p2) /2) =  
v(p2) /2

p5

Ik-1 Ik+1Ik

Block 
centered 
on pel p4



p1

p2

p

The DISCOVER algorithm: 
Refinement of bidirectional vectors
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p3

p4

p5

Ik-1 Ik+1Ik



The DISCOVER algorithm: 
Refinement and Median Filtering

• Split MVs are further refined with a block 
matching in a small window near their value

• Median filtering is performed to enforce regular 
MVs
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• The two motion-compensated images are 
added to produce the Side Information



The DISCOVER algorithm: 
Sample interpolated image

PSNR:

26.4 dB
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Test Conditions 

Direction scientifique30

� Spatial resolution: QCIF.
� Temporal resolution: 15 Hz (i.e. 

7.5 Hz for the WZ frames with 
GOP=2).

� GOP size: 2, 4 and 8.

    
(a) (b) (c) (d) 

    
(e) (f) (g) (h) 



VISNET II DVC versus H.264/AVC: 
Foreman
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VISNET II DVC versus H.264/AVC: 
Hall Monitor
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VISNET II DVC versus H.264/AVC: 
Coastguard
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VISNET II DVC versus H.264/AVC: 
Soccer
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Complexity

• WZ frame encoding complexity is approximately 1/6 
of the H.264/AVC Intra or H.264/AVC No Motion 
encoding complexity

• However, DVC decoding complexity is much higher 
(some orders of magnitude) than H.264/AVC Intra or 
H.264/AVC No Motion decoding complexity

• DVC decoding complexity is strongly dependent on 
the quality of SI
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•
the quality of SI

• Substantial on-going work on fast and parallel 
implementations of channel decoding algorithms



Robust Transmission

• Appealing for transmission over error-prone 
channels
– Statistical framework rather than a deterministic 

approach
– Absence of a prediction loop in the codec

• Decoding is successful, even in the presence of 
transmission errors, as long as the SI is within the 
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transmission errors, as long as the SI is within the 
noise margin of the encoded parity bits

• Scalable schemes robust to packet losses both in the 
base and enhancement layers

• Increase the robustness of standard encoded video 
by adding redundant information encoded according 
to distribute coding principles



Robust Transmission

• DVC
– WZ frames: hybrid spatial and temporal error 

concealment
– Key frames: JM error concealment

• H.264/AVC
– JM 11.0

Flexible Macroblock Ordering (FMO)
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– Flexible Macroblock Ordering (FMO)
– JM error concealment

• With/without feedback channel
– Automatic Repeat reQuest (ARQ)

• Packet Loss Rate
– 5%, 10%, 20%, error patterns from VCEG



Foreman, no feedback channel
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Hall Monitor, no feedback channel
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Foreman, feedback channel
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Hall Monitor, feedback channel
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Multiview Video Coding
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Multiview video coding

• Emerging problem
• Camera arrays, stereoscopic video

• Inter-view correlation and disparity estimation
• Temporal correlation and motion estimation

•
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• Huge complexity ���� DVC techniques
• Conceptually close to the monoview case

– Key frames and Wyner-Ziv frames 



Multi-View Video Coding

• MVC
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• MVC
– Extension of AVC
– Block-based predictive 

coding along time and 
across views

– Very complex encoder
– Cameras have to 

communicate



Multi-View Distributed Video Coding

Direction scientifique45

• DVC
– Low complexity / lower power consumption encoder
– Exploit inter-view correlation without communication 

between cameras



Multiview video coding: possible 
schemes

KF KF KF KF KF

Views
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WZ WZWZWZ WZ

KF KF KF KF KF

WZ WZWZWZ WZ

Time

Temporal
Interpolation



Multiview video coding: possible 
schemes

KF WZ KF WZ KF

Views
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KF KFWZWZ KF

KF WZ KF ZW KF

KF KFWZWZ KF

Time

Inter-view
Interpolation



Multiview video coding: possible 
schemes

KF WZ KF WZ KF

Views
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KFWZWZ KF

KF WZ KF ZW KF

KFWZWZ KF

Time

WZ

WZ

Interview and 
Temporal
Interpolation



Multiview DVC
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Inter-View Side Information

• Disparity Compensation View Prediction (DCVP)
– Straightforward extension of MCTI
– Disparity vectors are estimated between views
– Interpolation at mid-point to generate SI
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Inter-View Side Information
• Homography

– Homography relating the central view to side 
views

– Assumption that the scene is planar
– Parameters have to be computed once 1
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Inter-View Side Information
• View Morphing (VM)

– Fundamental matrix: map a point in one camera and its 
epipolar line in the other camera

– Requires at least seven point correspondences
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Inter-View Side Information
• View Synthesis Prediction (VSP)

– Camera calibration
– Intrinsic and extrinsic camera parameters
– Depth information

Direction scientifique53



Inter-View Side Information
• Multi-View Motion Estimation (MVME)

– Compute motion vectors in a side view
– Apply them to current view (WZ frame) using disparity 

vectors
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Inter-View Temporal Side Information
• Multi-View Motion Estimation (MVME)

– 8 different possible paths
– Weighted average using reliability measure (MSE or 

SAD of matching error)
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Application to IMVS:
Interactive Multiview Video Streaming

Views

All frames are Intra 
Coded

Each image is coded 
and stored only once
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Time

and stored only once

Large bandwidth 
requested

Relatively low server 
space requested



Application to IMVS:
Interactive Multiview Video Streaming

Views

P-frames are used: 
all possible frame 
dependencies are 
coded
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Time

Each image is coded
many times

Smallest bandwidth 
requested

Very large server 
space requested



Application to IMVS:
Interactive Multiview Video Streaming

Views

WZ-frames are used: 
only parity bits are 
coded
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Time

Each image is coded 
and stored only once

Trade-off between 
server space and 
bandwidth



Conclusions
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Most Promising Applications
Application Flexible allocation of 

codec complexity
Improved error
resilience

Codec independent
scalability

Exploitation of multi-
view correlation

Wireless video cameras X X

Wireless low-power 
surveillance

X X X X

Mobile document 
scanner

X X

Video conferencing with
mobile devices

X X
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Mobile video mail X

Disposable video
cameras

X

Visual sensor networks X X X X

Networked camcorders X X X

Distributed video
streaming

X X X

Multiview video
entertainment

X X

Wireless capsule 
endoscopy

X X



Conclusions

• DVC allows very low-complexity video coding
– In theory without loss in RD performance
– In practice some loss seems unavoidable

• DVC allows graceful degradation in unreliable 
environment
– Joint source/channel coding naturally applies to 
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– Joint source/channel coding naturally applies to 
the channel coding used in DVC

• DVC enables MVC with low computational power
– Distributed exploitation of inter-view correlation
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