
Spotlight

54 Published by the IEEE Computer Society 1089-7801/11/$26.00 © 2011 IEEE IEEE INTERNET COMPUTING

S ummer 2010, time for the 19th FIFA World
Cup. It was an exhilarating month, with
64 matches played by 32 national teams.

Unsurprisingly, the World Cup is one of the most
watched events worldwide, and this year marked
the first time that viewers had the chance to
see games broadcast in 3D. But more impor-
tantly, many more viewers than ever watched
the games over the Web. With recent develop-
ments in video streaming technologies and
the increase in broadband Internet access pen-
etration, fans enjoyed watching games in high-
definition or near-HD quality on their comput-
ers, smartphones, and other connected devices,
including their TVs. In the US, 45 percent of
the daily World Cup TV audience watched the
matches in a non-home environment or on
a non-TV platform (www.espnmediazone3.
com/us/2010/07/espn-xp-world-cup-dispatch-
4-through-742010). ESPN3.com reached more
than 7 million unique viewers and delivered 15
million hours of content.

Just a few months prior, we witnessed the
same phenomenon with the Vancouver 2010
Winter Games. In Canada, where the popu-
lation is approximately 34 million, almost
4 million unique viewers watched the games on
the Internet. CTV, the national TV network that

broadcast the games, made 300 events available
on the Web. Canadian Internet users consumed a
total of 6.3 million hours of live and 0.9 million
hours of on-demand content, resulting in a total
6.2 Pbytes delivered in about two weeks (www.
microsoft.com/casestudies/Case_Study_Detail.
aspx?casestudyid=4000007347). Two years ago,
the Beijing Summer Games similarly attracted
online viewers, both for live and on-demand
viewing, with NBC delivering more than 1,100
years of video content to almost 52 million unique
online viewers in the US during the games.

Sporting events aren’t the sole type of con-
tent attractive to online viewers, though. In the
past few years, many providers have started
making their regular and premium content
such as news, series, shows, and movies avail-
able on their Web sites. Despite geographical
restrictions on many of these Web sites, con-
sumers saw a proliferation in the amount of
content they had access to. Some content pro-
viders and TV channels don’t impose restric-
tions on viewer location, and thus transformed
from being a regional TV source to a global
one, extending their reach for ad revenues in
an unforeseen manner.

In this first installment of a two-part series, we
describe the impetus behind this shift, focusing

Watching Video over the Web
Part 1: Streaming Protocols
Ali C. Begen, Tankut Akgul, and Mark Baugher • Cisco

The average US consumer watches TV for almost five hours a day. While the

majority of viewed content is still broadcast TV programming, the share of the

time-shifted content is on the rise. One-third of US viewers currently use a

digital video recorder like device, but trends indicate that more consumers are

migrating to the Web to watch their favorite shows and movies. Increasingly,

the Web is coming to digital TV, which incorporates movie downloads and

streaming via Web protocols. In this first part of a two-part article, the authors

describe both conventional and emerging streaming solutions using Web and

non-Web protocols.

IC-15-02-Spotlight.indd 54 2/24/11 5:53 PM

Watching Video over the Web, Part 1: Streaming Protocols

MARCH/APRIL 2011 55

on several streaming solutions that
exist today.

Thirsty for Streams
Consumers’ desire to access practi-
cally limitless amounts of content
any time they want and the drop in
delivery costs hastened the deploy-
ment of streaming services. New
Web sites that handle content aggre-
gation such as Hulu emerged. In May
2010, Hulu had more than 40 million
unique viewers in the US, streaming
more than 1 billion videos per month
(www.comscore.com/Press_Events/
Press_Releases/2010/6/comScore_
Releases_May_2010_U.S._Online_
Video_Rankings). Remarkably, these
numbers are steadily increasing.
Netflix, the largest subscription
service for DVD rental and stream-
ing video, currently has over 20 mil-
lion subscribers, many of whom use
its streaming services on a vari-
ety of devices (www.netflix.com/
MediaCenter?id=5379).

We can divide Internet video,
also known as over-the-top (OTT)
services, into distinct categories of
user-generated content from mostly
amateurs (such as the content served
by YouTube), professionally generated
content from studios and networks
to promote their commercial offer-
ings and programming (such as what
you find on ABC.com or Hulu), and
direct movie sales to consumers over
the Internet (also referred to as elec-
tronic sell-through, or EST). In the
last category, Netflix, Apple TV, and
new undertakings such as UltraViolet
are greatly increasing the amount of
video offerings on the Internet.

Cisco’s Visual Networking Index
(VNI) suggests that traffic volumes
in the order of tens and hundreds
of exabytes (1 billion Gbytes) and
zettabytes (1,000 Ebytes) aren’t that
remote. Over the next few years,
90 percent of the bits carried on
the Internet will be video related
and consumed by more than 1 bil-
lion users. Although some portion of

these video bits will be for managed
services such as cable TV and IPTV,
we can’t ignore the amount of bits for
unmanaged (OTT) services.

Cable and IPTV services run over
managed networks for distribution
because these services use multi-
cast transport and require certain
quality-of-service (QoS) features.1
In contrast, conventional streaming
technologies such as Microsoft Win-
dows Media, Apple QuickTime, and
Adobe Flash, as well as the emerg-
ing adaptive streaming technologies
such as Microsoft’s Smooth Stream-
ing, Apple’s HTTP Live Streaming,
and Adobe’s HTTP Dynamic Stream-
ing, run over mostly unmanaged
networks. These streaming technolo-
gies send the content to the viewer

over a unicast connection (from a
server or content delivery network
[CDN]) through either a proprietary
streaming protocol running on top
of an existing transport protocol,
mostly TCP and occasionally UDP,
or the standard HTTP protocol
over TCP.

Historically, progressive down-
load, which uses HTTP over TCP, has
been quite popular for online content
viewing due to its simplicity. In pro-
gressive download, the playout can
start as soon as enough necessary
data is retrieved and buffered. Today,
YouTube delivers more than 2 bil-
lion videos daily with this approach.
However, progressive download
doesn’t offer the flexibility and rich
features of streaming. Before the
download starts, the viewer must
choose the most appropriate version

if there are multiple offerings with
different resolutions for the same
content. If there isn’t enough band-
width for the selected version, the
viewer might experience frequent
freezes and rebuffering. Trick modes,
such as fast-forward seek/play or
rewind, are often unavailable or lim-
ited. These limitations are likely to
inhibit the growth of large volume
(including HD) movie distribution on
the Internet. A new approach, which
we refer to as adaptive streaming, is
emerging to address these shortcom-
ings while preserving the simplicity
of progressive download.

Adaptive streaming is a hybrid of
progressive download and streaming.
On one hand, it’s pull-based, as is
progressive download: the adaptive

streaming client sends HTTP request
messages to retrieve particular seg-
ments of the content from an HTTP
server and then renders the media
while the content is being transferred.
On the other hand, these segments are
short, enabling the client to download
only what’s necessary and use trick
modes much more efficiently, giv-
ing the impression that the client is
streaming. More importantly, short-
duration segments (for example,
MPEG4 file fragments) are available
at multiple bitrates, corresponding to
different resolutions and quality lev-
els, so the client can switch between
different bitrates at each request. The
client player strives to always retrieve
the next best segment after examin-
ing a variety of parameters related
to available network resources, such
as available bandwidth and the state

Historically, progressive download, which
uses HTTP over TCP, has been quite popular
for online content viewing due to its
simplicity.

IC-15-02-Spotlight.indd 55 2/24/11 5:53 PM

Spotlight

56 www.computer.org/internet/ IEEE INTERNET COMPUTING

of the TCP connections; device capa-
bilities, such as display resolution and
available CPU; and current stream-
ing conditions, such as playback buf-
fer size. The goal is to provide the best
quality of experience by displaying the
highest achievable quality, starting up
faster, enabling quicker seeking, and
reducing skips, freezes, and stutters.

Because adaptive streaming uses
HTTP, it benefits from the ubiqui-
tous connectivity that HTTP has to
offer. Today, practically any con-
nected device supports HTTP in
some form. It’s a pull-based protocol
that easily traverses middleboxes,
such as firewalls and NAT devices.
It keeps minimal state information
on the server side, which makes
HTTP servers potentially more scal-
able than conventional push-based
streaming servers. To the existing
HTTP caching infrastructure, adap-
tive streaming is no different than
any other HTTP application. Indi-
vidual segments of any content are
separately cacheable as regular Web
objects using HTTP or any RESTful
(conforming to the Representational
State Transfer constraints) Web pro-
tocol. This allows distributed CDNs
to greatly enhance the scalability of
content distribution.

Media Streaming
Transmission of content between
different nodes on a network can be
performed in a variety of ways. The
type of content being transferred
and the underlying network condi-
tions usually determine the methods
used for communication. For simple
file transfer over a lossy network,
the emphasis is on reliable delivery:
added redundancy protects packets
against losses, or retransmission can
recover lost packets. When it comes
to audio/video media delivery with
real-time viewing requirements, the
emphasis is on low latency and jit-
ter, and efficient transmission; occa-
sional losses might be tolerated in
this case. The structure of the packets

and algorithms used to transmit real-
time media on a given network col-
lectively define the media streaming
protocol. Although various media
streaming protocols available today
differ in implementation details, we
can classify them into two main
categories: push- and pull-based
protocols.

Push-Based Media
Streaming Protocols
In push-based streaming protocols,
once a server and a client establish
a connection, the server streams
packets to the client until the client
stops or interrupts the session. Con-
sequently, in push-based stream-
ing, the server maintains a session
state with the client and listens for
commands from the client regard-
ing session-state changes. Real-time
Streaming Protocol (RTSP), specified
in RFC 2326, is one of the most com-
mon session control protocols used
in push-based streaming.

Push-based streaming protocols
generally utilize Real-time Transport
Protocol (RTP), specified in RFC 3550,
or equivalent packet formats for data
transmission. RTP usually runs on
User Datagram Protocol (UDP), a
protocol without any inherent rate-
control mechanisms. This lets the
server push packets to the client
at a bitrate that depends on an
application-level client/server imple-
mentation rather than the underlying
transport protocol, and makes RTP
a nice fit for low-latency and best-
effort media transmission.

In conventional push-based
streaming, the server transmits con-
tent at the media encoding bitrate to
match the client’s media consump-
tion rate. In normal circumstances,
this ensures that client buffer lev-
els remain stable over time. It
also optimizes the use of network
resources because the client usu-
ally can’t consume at a rate above
the encoding bitrate; consequently,
transmitting above that rate would

unnecessarily load the network.
Moreover, transmission above the
encoding bitrate might not be even
possible for live streams in which the
stream is encoded on the fly. How-
ever, if packet loss or transmission
delays occur over the network, the
client’s packet retrieval rate can drop
below its consumption rate, which
might drain its buffer and eventu-
ally result in a buffer underflow
that interrupts the playback. This is
where bitrate adaptation comes into
play.

To prevent a buffer underflow,
the server can dynamically switch to
a lower-bitrate stream. This, in turn,
reduces the media consumption rate
at the client side and counteracts the
effect of network bandwidth capac-
ity loss. Because a sudden drop in
the encoding bitrate can result in a
noticeable visual quality degrada-
tion, this reduction should occur in
multiple intermediate steps until the
client’s consumption rate matches
or drops below its available receive
bandwidth. When network condi-
tions improve, the server does the
opposite and switches to a higher-
bitrate stream — again, in multiple
intermediate steps to avoid a sudden
network overload. Provided that the
stream isn’t live and the network
capacity allows for a higher-bitrate
transmission, the server can also
choose to send packets at a higher
rate than the media encoding rate
to fill up the client’s buffer. By
dynamically monitoring available
bandwidth and buffer levels and by
adjusting the transmission rate via
stream switching, push-based adap-
tive streaming can achieve smooth
playback at the best possible quality
level without pauses or stuttering.

Bandwidth monitoring is usually
performed on the client, which also com-
putes network metrics such as round-
trip time (RTT), packet loss, and network
jitter periodically. The client can use this
information directly to make decisions
about when to switch to a higher or a

IC-15-02-Spotlight.indd 56 2/24/11 5:53 PM

Watching Video over the Web, Part 1: Streaming Protocols

MARCH/APRIL 2011 57

lower-bitrate stream, or it can commu-
nicate this information along with its
buffer levels to the server via receiver
reports and let the server make those

decisions. Such reports are usually
transmitted via RTP Control Protocol
(RTCP). See the “Bitrate Adaptation in
3GPP” sidebar for more information.

Pull-Based Media
Streaming Protocols
In pull-based streaming protocols,
the media client is the active entity

Bitrate Adaptation in 3GPP

The 3rd Generation Partnership
Project (3GPP) is a collaboration

between telecommunications asso-
ciations whose scope is to produce
technical specifications for 3G mobile
systems based on Global System for
Mobile Communications (GSM) net-
works. Popular push-based streaming
servers such as RealNetworks Helix
or Apple QuickTime use the bitrate
adaptation mechanisms defined in
3GPP standards.

In its Release 6, 3GPP defined mech-
anisms for the media client to inform the
media server about dynamically switch-
ing the transmission bitrate.1,2 The
algorithms that adapt the bitrate are
implementation-specific. These algo-
rithms collect real-time statistics about
available bandwidth and client buffer
levels. In a typical implementation, the
process goes as depicted in Figure A.

During session setup, the server
sends a list of available streams and their properties such as bitrate
and codec to the client via Session Description Protocol (SDP),
specified in RFC 4566, in response to the client’s RTSP DESCRIBE
message. After receiving the session description, the client picks
from within the available audio and video streams that best fit with
its link speed and decoding capabilities. Then, the client sends RTSP
SETUP messages (one for each unique audio and video stream)
to the server to prepare it to send out the selected streams.
The RTSP message header contains a 3GPP-Adaptation
parameter that informs the server about the client’s buffer size
(size attribute) and minimum required buffering (target-time
attribute) to ensure interrupt-free playback. It also contains a
3GPP-Link-Char parameter that provides information about
the client’s guaranteed receive bandwidth (GBW attribute).

After the server obtains information about the client’s buf-
fer and receive bandwidth, it sets up a buffer model to simulate
the changes in the client’s receive buffer levels. In this model,
the server tries to satisfy the minimum required buffer level
while preventing any overflows. Because network conditions
and buffering requirements can change over time, the client
keeps notifying the server via periodic RTCP receiver reports.
These messages carry information such as available free space
in the client’s receive buffer, playout delay (the time difference

between the presentation time of the next frame in the decoder
buffer and the time the RTCP message is sent), and estimated
network bandwidth. Using this information, the server can
maintain an accurate model of the client’s receive buffer and
make informed decisions about when to switch to a higher- or
lower-bitrate stream dynamically.

The upshift and downshift buffer level thresholds for the
stream are usually preprogrammed on the server. For instance,
if the server detects that the client’s buffer level is below the
next downshift threshold, it switches to the next lower encod-
ing rate available to prevent the buffer from draining any further.
On the other hand, if the buffer level exceeds the next upshift
threshold, the server switches to the next higher encoding rate,
provided that the network bandwidth can support that rate. If
not, the server might choose to slow down the transmission
rate to prevent a buffer overflow.

References
1. “Transparent End-to-End Packet-Switched Streaming Service (PSS);

Protocols and Codecs,” 3GPP TS 26.234, Dec. 2010; http://ftp.3gpp.org/

specs/html-info/26234.htm.

2. P. Fröjdh et al., “Adaptive Streaming within the 3GPP Packet-Switched

Streaming Service,” IEEE Network, vol. 20, no. 2, Mar. 2006, pp. 34–40.

Client buffer model

Se
ss

io
n

se
tu

p
St

re
am

in
g

Time (s)

SETUP rtsp://example.com/mov.test/streamID=0 RTSP/1.0
3GPP‐Adaptation:url=“rtsp://example.com/mov.test/
 streamID=0”;size=20000;target‐time=5000
3GPP‐Link‐Char:url=“rtsp://example.com/mov.test/
 streamID=0”; GBW=32

DESCRIBE rtsp://example.com/mov.test RTSP/1.0

PLAY rtsp://example.com/mov.test RTSP/1.0

RTCP reports

RTP

SDP

RTSP OK

RTSP OK

Client buffer

Figure A. Example 3GPP streaming session setup with bitrate adaptation.

IC-15-02-Spotlight.indd 57 2/24/11 5:53 PM

Spotlight

58 www.computer.org/internet/ IEEE INTERNET COMPUTING

that requests content from the media
server. Therefore, server response
depends on the client’s requests when
the server is otherwise idle or blocked
for that client. Consequently, the
bitrate at which the client receives
the content depends on the client and
available network bandwidth. As the
Internet’s primary download proto-
col, HTTP is a common protocol for
pull-based media delivery.

Progressive download is one of
the most widely used pull-based
media streaming methods available
on IP networks today. In progressive
download, the media client issues an
HTTP request to the server and starts
pulling content from it as quickly
as possible. Once the client fills up
a minimum required buffer level, it
starts playing the media while con-
tinuing to download content from the
server in the background. As long as
the download rate isn’t smaller than
the playback rate, the client buffer
stays at a sufficient level to con-
tinue an uninterrupted playback. How-
ever, if network conditions degrade,

download rate can fall behind the
playback rate, which might cause an
eventual buffer underflow.

Similar to methods used in push-
based streaming, pull-based stream-
ing protocols use bitrate adaptation
to prevent buffer underflow. Figure 1
shows an example implementation,
where the media content is divided
into short-duration media segments
(also called fragments), each of which
is encoded at various bitrates and can
be decoded independently. When the
client plays the fragments back to
back, it can seamlessly reconstruct the
original media stream. During down-
load, the media client dynamically
picks the fragment with the right
encoding bitrate that matches or is
below the available bandwidth and
requests that fragment from the
server. This way, the client can adapt
its media-consumption rate according
to the available receive bandwidth.

Although media fragment struc-
tures differ among implementations,
the basic principle for fragment con-
struction is the same. When audio

and video aren’t interleaved, each
audio frame usually consists of con-
stant duration audio samples in the
milliseconds range, and each frame is
usually decodable on its own for com-
mon audio codecs. Therefore, one can
easily stuff audio data into a media
fragment by combining a sufficient
number of audio frames to match the
fragment duration. For video, on the
other hand, the frames aren’t neces-
sarily independently decodable due
to temporal prediction commonly
applied between the frames. There-
fore, for video, the partitioning for
fragment construction is performed
at the group of pictures (GoP) bound-
ary instead. In video coding, a GoP is
a frame sequence that starts with an
intra-coded frame (I-frame) that can
be decoded independently, followed
by predicted frames that depend on
other frames. If the predicted frames
within a GoP depend only on the
frames within that same GoP, we
call it a closed GoP — otherwise, it’s
an open GoP. Because a closed GoP
is self-contained (meaning it can be

Contents on the Web server

Start quickly

Keep requesting

Improve quality

Loss/congestion detection

Revamp quality

Time (s)

Request manifest for Movie A

Request Movie A (200Kbps) t = 0

Manifest

Request Movie A (400Kbps) t = 2

Request Movie A (800Kbps) t = 4

Request Movie A (400Kbps) t = 6

Request Movie A (800Kbps) t = 8

Movie A –200 Kbps

Movie A –400 Kbps

Movie A –1.2 Mbps

Movie A –2.2 Mbps

. . .

. . .

...

Movie K –200 Kbps

Movie K –400 Kbps

Movie K –1.2 Mbps

Movie K –2.2 Mbps

. . .

. . .

Fragments

. . .

...

...

Figure 1. Example bitrate adaptation in pull-based adaptive streaming showing how a client reacts to network
conditions.

IC-15-02-Spotlight.indd 58 2/24/11 5:53 PM

Watching Video over the Web, Part 1: Streaming Protocols

MARCH/APRIL 2011 59

decoded independently from other
GoPs), one can construct a fragment
from it rather straightforwardly. The
encoder simply adjusts the number
of frames in the GoP such that the
total duration of its frames is equal to
the desired fragment duration. How-
ever, if the fragment duration is large
compared to a typical GoP size, we’ll
want to pack more than one GoP into
a fragment.

Let’s look more closely at two dif-
ferent implementations of pull-based
adaptive streaming protocols that are
based on multi-bitrate fragments.

Microsoft Smooth Streaming. Micro-
soft’s Smooth Streaming implementa-
tion is based on Protected Interoperable
File Format (PIFF; http://go.microsoft.
com/?linkid=9682897), which is an
extension of the MPEG4 (MP4) file
format specification (www.iso.org/iso/
catalogue_detail.htm?csnumber=51533).
In Smooth Streaming, all fragments
with the same bitrate are stored in a
single MP4 file. Therefore, each avail-
able bitrate has a separate file. Frag-
ments are usually two seconds long
and typically contain a single GoP.

Figure 2 shows a fragmented MP4
file. A fragmented MP4 file is com-
posed of a hierarchical data struc-
ture. The most basic building block
of this hierarchy is called a box; it
can contain audio/video data and
metadata. Each box type is des-
ignated by a four-letter identifier.
The file starts with an ftyp box that
describes the version information
for the specifications with which the
file complies, followed by a moov
box that describes the media tracks
available in the file. The audio/
video media data for a single frag-
ment is contained within a box of
type mdat. In a fragmented MP4
container structure, an mdat box is
immediately preceded by a box of
type moof, which contains metadata
for that fragment. The moof box can
also contain signaling information,
such as a sequence counter for the

fragment, the number of samples
within the fragment, and each sam-
ple’s duration.

For the client to request a frag-
ment with a specific bitrate and start
time, it first needs to know which
fragment(s) are available on the
server. This information is communi-
cated to the client at the beginning of
the session via a client-side manifest
file. In addition to bitrates, this file
describes codecs, video resolutions,
captions, and other auxiliary infor-
mation for the available streams.

Once the client downloads the
manifest file, it uses the informa-
tion in this file to make HTTP GET
requests to the server for the indi-
vidual fragments. Each fragment
is downloaded via a unique HTTP
request-response pair. The HTTP
request message header contains two
pieces of information: the bitrate and
the requested fragment’s time offset
(see Figure 3).

When the server gets an HTTP-
encapsulated request from the cli-
ent for a particular media fragment,
it first needs to determine which
MP4 file to search for that fragment.
This information is contained in
another manifest file, the server-side

manifest, which maps MP4 files to
the bitrates of the fragments they
contain. The server looks up the
bitrate information it receives from
the client in the manifest file and
determines the corresponding MP4
file to search.

After the server determines the
correct file, the next step is to locate
the requested fragment in that file.
This is achieved via indexing data.
As Figure 2 shows, an MP4 file also
contains boxes of type mfra that con-
tain a fragment’s location and pre-
sentation time. The media server uses
the time offset information it receives
from the client to find a match with a
fragment index in the MP4 file. Once
the server locates the fragment in the
file, it sends the contained moof box
followed by the mdat box, and these
make up the fragment on the wire.

Apple HTTP Live Streaming. Apple’s
HTTP Live Streaming implementa-
tion (http://tools.ietf.org/html/draft-
pantos-http-live-streaming) follows
a different approach for fragment
(referred to as media segment in the
implementation) storage, which is
based on the ISO/IEC 13818-1 MPEG2
Transport Stream file format. As

Fragment Fragment

. . .

Fi
le

 t
yp

e
(ft

yp
)

Movie
metadata

(moov)

Movie
fragment
random

access
(mfra)

M
ov

ie
 fr

ag
m

en
t (

m
oo

f)

M
ed

ia
 d

at
a

(m
da

t)

M
ov

ie
 fr

ag
m

en
t (

m
oo

f)

M
ed

ia
 d

at
a

(m
da

t)

Figure 2. Fragmented MP4 file format structure. The audio and video
data are in mdat boxes, which together with the metadata form a
fragment that is retrieved in an HTTP GET request. (Image adapted from
http://alexzambelli.com/blog/2009/02/10/smooth-streaming-architecture/.)

GET /sample/v_720p.ism/QualityLevels(1500000)/Fragments(video=160577243) HTTP/1.1

Figure 3. Example HTTP request message for downloading a fragment.

IC-15-02-Spotlight.indd 59 2/24/11 5:53 PM

Spotlight

60 www.computer.org/internet/ IEEE INTERNET COMPUTING

opposed to Smooth Streaming, each
media segment is stored in a separate
transport stream file. A stream seg-
mentation process reads a continuous
transport stream file and divides it into
equal-duration segments of 10 seconds
by default. Longer fragment duration
reduces the number of fragments.
Longer fragments also allow better
compression because they have more
temporal redundancy. However, it
also reduces the granularity at which
fragment-switching decisions can be
made, which means it might not be as
good in terms of adapting to dynamic
bandwidth changes.

Similar to Microsoft’s Smooth
Streaming implementation, a client-
side manifest file keeps a record of
the media segments available for the
client. The manifest file format is an
extension to the MP3 playlist file stan-
dard; Figure 4 shows an example of
the manifest files organized in a two-
level hierarchy. Each file starts with an
EXTM3U tag that distinguishes it from
an ordinary MP3 playlist. The file on
the left is a higher-level file that links
to two other lower-level files on the
right. The link for each lower-level file
is specified in a URI that’s always pre-
ceded by an EXT-X-STREAM-INF tag.

This tag has an attribute named
BANDWIDTH that indicates the corre-
sponding lower-level file is a mani-
fest for an alternate encoding of the
segments it lists. In the example, the
stream has two alternate encodings
for each segment — that is, one low-
quality (100 Kbps) encoding and one
high-quality (2 Mbps) encoding.

The lower-level files on the right
provide the links for the individual
media segments available for down-
load. Following the EXTM3U tag is an
EXT-X-MEDIA-SEQUENCE tag that lists
the sequence number of the first seg-
ment in the playlist. Each segment
typically has a unique sequence num-
ber that changes in single increments,
starting from the first segment’s
sequence number. The URIs for the
individual segments are marked with
an EXTINF tag. This tag has an attribute
separated by a semicolon that indicates
the duration of the corresponding
media segment. In the example, each
segment is 10 seconds long.

For fixed-duration streams, EXT-
X-ENDLIST marks the end of the
playlist. This tag doesn’t exist in
live streams where the playlist can
grow dynamically. In the case of live
streams, the client must periodically
refetch an updated manifest. The
period for refetching the manifest
depends on whether the manifest
file has changed since the last time
it was reloaded. If the manifest has
changed, the period is the duration of
the last media segment in the play list
(which is specified by the EXTINF tag).
If the manifest hasn’t changed, then
the period is a multiple of the dura-
tion specified by the EXT-X-TARGET-
DURATION tag. This tag indicates the
maximum EXTINF value of any media
file that can be added to playlist and is
constant throughout the manifest file.

Example Functional Diagram
for Client-Side Pull-Based
Adaptive Streaming
Figure 5 illustrates a generic client-
side pull-based adaptive streaming

#EXTM3U
#EXT-X-STREAM-INF:PROGRAM-ID=1,BANDWIDTH
 =2000000
http://example.com/hq/prog1.m3u8

#EXT-X-STREAM-INF:PROGRAM-ID=1,BANDWIDTH
 =100000
http://example.com/lq/prog1.m3u8

#EXT-X-ENDLIST

#EXTM3U
#EXT-X-MEDIA-SEQUENCE:0
#EXT-X-TARGETDURATION:10
#EXTINF:10,
http://example.com/segment
 -HQ1.ts
#EXTINF:10,
http://example.com/segment
 -HQ2.ts

...
#EXT-X-ENDLIST

#EXTM3U
#EXT-X-MEDIA-SEQUENCE:0
#EXT-X-TARGETDURATION:10
#EXTINF:10,
http://example.com/segment
 -LQ1.ts
#EXTINF:10,
http://example.com/segment
 -LQ2.ts

...
#EXT-X-ENDLIST

Figure 4. Example showing HTTP Live Streaming playlists.

Request

Response

Client manages

• Manifest(s)
• HTTP transport
• TCP connection(s)

Client performs adaptation

Client monitors/measures

• Playout buffer
• Download times and throughput
• Local resources (CPU, memory, screen, etc.)
• Dropped frames

Network

Figure 5. A client-side pull-based adaptive streaming implementation.

IC-15-02-Spotlight.indd 60 2/24/11 5:53 PM

Watching Video over the Web, Part 1: Streaming Protocols

MARCH/APRIL 2011 61

implementation. At minimum, the
server provides standard responses
to HTTP GET requests. The client
gets a manifest file that identifies
files containing media presentations
at alternative bitrates. The client
acquires media from fragments of a file
over one or more connections accord-
ing to the playout buffer state and
other conditions.

The basic client/server adaptive
streaming configuration requires
the general functions shown on the
client-side of Figure 5:

•	 The client needs a file, called a
client-side manifest or a playlist,
to map fragment requests to spe-
cific files or to map byte ranges
or time offsets to files. In some
adaptive streaming schemes, a
similar file on the server trans-
lates client requests.

•	 Playout buffer management is a
basic function required on any
adaptive streaming client, to select
fragments from a file at a particular
bitrate in response to buffer state
and potentially other variables.
Typically, an adaptive streaming
client keeps a playout buffer of sev-
eral seconds (between five and 30).

•	 A transport is needed to commu-
nicate requests from the client to
the server; the pull-based adap-
tive streaming schemes that we
survey in this article use HTTP
GET requests, either to a standard
HTTP Web server or to a special-
ized Web services API supported
by a special service on the server
(such as a Smooth Streaming
Transport application running on
Microsoft’s Internet Information
Services server).

•	 GET requests use a single TCP
connection by default, but some
adaptive streaming implemen-
tations support using multiple
concurrent TCP connections for
requesting multiple fragments at
the same time or for pulling audio
and video in parallel.

The client is preconfigured to
request a content at a certain bitrate, or
profile, based on the result of network
tests or a simple configuration script.
When a profile is selected and the
client finds the URI associated with
it in the manifest, it establishes one
or more connections to the server.
We’ve observed that different products
employ different strategies — for
example, some use only one TCP
connection for GET requests to a
file whereas others open and close
multiple TCP connections during an
adaptive streaming session. As the
client monitors its buffer, it might
choose to upshift to a higher-bitrate
profile or downshift to a lower one,
depending on how much the rate
of video transport does or does
not exceed the playout rate. Some

adaptive streaming products open a
new connection when upshifting or
downshifting to a new profile.

Alternative Methods
for Bitrate Adaptation
We’ve described adaptive streaming
methods that work based on the prin-
ciple of switching between alternate
encodings of a content as a whole
or switching between individual
fragments of it encoded at several
bitrates. An alternative technology
called Scalable Video Coding (SVC)
lets clients choose media streams
appropriate for underlying network
conditions and their decoding capa-
bilities. SVC has been standardized
as an extension to the H.264/MPEG4

AVC video compression specifica-
tion; in its current form, it applies to
video streams only.

In SVC, a video bitstream is made
up of a hierarchical structure of lay-
ers. The base layer provides the lowest
level of quality in terms of frame rate,
resolution, and signal-to-noise ratio
(SNR). Each enhancement layer on top
of the base layer provides an improve-
ment for one or more of these scalable
quality parameters. Enhancement
layers can be independently stored or
sent over the network. Therefore, we
can modify the overall stream bitrate
by selectively adding or removing
enhancement layers to and from a
stream.

The quality knobs in SVC are
referred to as temporal, spatial, and
SNR scalability. Temporal scalability

provides a way to add or drop com-
plete pictures to and from a stream. It
isn’t a new concept; in its most basic
form, traditional push-based stream-
ing servers have used it in terms of
a method known as stream thinning.
Spatial scalability, on the other hand,
encodes video signal at multiple reso-
lutions. The client can use the recon-
structed lower-resolution frames
to predict and reconstruct higher-
resolution frames with the added
information sent in the enhancement
layers. SNR scalability encodes the
video signal at a single resolution but
at different quality levels by modi-
fying the encoding precision. Each
enhancement layer increases the pre-
cision of the lower layers.

As the client monitors its buffer, it might
choose to upshift to a higher-bitrate profile or
downshift to a lower one, depending on how
much the rate of video transport does or does
not exceed the playout rate.

IC-15-02-Spotlight.indd 61 2/24/11 5:53 PM

Spotlight

62 www.computer.org/internet/ IEEE INTERNET COMPUTING

A key advantage of SVC lies in
its ability to distribute information
among various layers with minimal
added redundancy. In other words,
while a stream that’s traditionally
encoded at different quality levels
has significant redundancy between
the encodings, each layer in an SVC-
encoded stream has minimal com-
mon information between the layers.
This makes SVC efficient for media
storage at various quality levels.
Another advantage of SVC is the
graceful degradation of stream qual-
ity without client or server interven-
tion when packets from enhancement
layers can’t be delivered due to
abrupt changes in network condi-
tions. This is in contrast to multi-
bitrate encoding, which requires
switching from one encoding to
another via a client or server deci-
sion to adjust to changes in network
conditions. SVC streams are typi-
cally more complex to generate and
impose codec restrictions compared
to multi-bitrate streams. Thus, the
adoption rate for SVC has been
rather slow.

Comparison of Push- vs. Pull-
Based Streaming Protocols
Table 1 summarizes the differ-
ences between push- and pull-based
streaming (here, pull-based stream-
ing exclusively refers to streaming
over HTTP). One of the main differ-
ences between push- and pull-based
streaming is the server architecture’s
complexity. As mentioned earlier,

in pull-based streaming, bitrate
management is usually a client task,
which significantly simplifies the
server implementation. Furthermore,
pull-based streaming can run on top
of HTTP. Therefore, with minor pro-
visions, an ordinary Web server can
serve media content in pull-based
streaming, although complexities
can arise in streaming live content
to a large number of clients.

Push-based streaming, on the
other hand, requires a specialized
server that implements RTSP or a
similar purpose-built protocol with
built-in algorithms for tasks such as
bitrate management, retransmission,
and content caching. This may make
pull-based streaming more cost-
effective compared to push-based
streaming.

Despite the lower server costs,
pull-based streaming is usually less
efficient, overhead-wise, than push-
based streaming due to the underly-
ing transport protocol. Compared to
HTTP over TCP, RTP imposes a lower
transmission overhead. Moreover,
because RTP usually runs on top of
UDP, the retransmission dynamics
and congestion control mechanisms
of TCP don’t inherently exist in RTP.

Both push- and pull-based
streaming protocols allow client buff-
ering both at the beginning of a session
and also after trick-mode transitions
such as fast forward to play. This is
performed to prevent buffer under-
flows and achieve a smooth playback
experience. In adaptive streaming

methods, the initial client buffering
duration can be substantially less
than nonadaptive streaming meth-
ods due to the fact the client can
begin with a lower-bitrate stream.
This allows fast startup and increases
responsiveness.

But one of the key benefits of
push-based streaming is multicast
support. Multicast lets servers send
a packet only once to a group of cli-
ents waiting to receive that packet.
The packet is duplicated along the
network path in an optimal way,
and a client can join or leave a mul-
ticast group on demand. This way,
a client can receive only the pack-
ets it wants. Pull-based streaming,
on the other hand, works based on
the unicast delivery scheme, which
offers a one-to-one path between the
server and each client. Therefore, in
the worst case, a server has to send
a packet as many times as the num-
ber of clients requesting that packet,
and, similarly, a network node in the
middle has to pass along the same
packet multiple times. This reduces
network efficiency.

Routing and packet delivery over
the network can be made more effi-
cient by using content caching. The
content is cached along the network
on dedicated cache servers. This
way, a client can obtain content from
a nearby cache server in the network
instead of going all the way up to
the origin server. The most efficient
use of caching is most likely in pull-
based adaptive streaming, where
each fragment can be cached in the
network independently.

T he popularity of watching tradi-
tional broadcast TV programming

is weakening every day against the
Web’s onslaught. Consumers can
access Web content not just from
a TV in the living room but from
a variety of devices in a variety of
places connected through different
types of access networks. Adaptive

Table 1. Comparison between push- and pull-based streaming protocols.

Push-based Pull-based

Source Broadcasters and servers
like Windows Media, Apple
QuickTime, RealNetworks Helix,
Cisco CDS/DCM

Web servers such as
LAMP, Microsoft IIS,
RealNetworks Helix,
Cisco CDS

Protocols RTSP, RTP, UDP HTTP

Bandwidth usage Likely more efficient Likely less efficient

Video monitoring
and user tracking

RTCP for RTP transport Currently proprietary

Multicast support Yes No

IC-15-02-Spotlight.indd 62 2/24/11 5:53 PM

Watching Video over the Web, Part 1: Streaming Protocols

MARCH/APRIL 2011 63

streaming methods that can deal
with the challenges presented by
this variety as well as the scalability
of content distribution to large audi-
ences are further accelerating this
trend transition, which will certainly
impact existing business models and
create new revenue opportunities.
In the second part of this article, we
look into applications for streaming,
contrast adaptive approaches with
other video delivery paradigms, dis-
cuss current standardization efforts,
and highlight areas that still require
further research and investigation.

Reference
1. G. Thompson and Y.-F.R. Chen, “IPTV:

Reinventing Television in the Internet

Age,” IEEE Internet Computing, vol. 13,

no. 3, May 2009, pp. 11–14.

Ali C. Begen is with the Video and Con-

tent Platforms Research and Advanced

Development Group at Cisco. His inter-

ests include networked entertainment,

Internet multimedia, transport proto-

cols, and content distribution. Begen has

a PhD in electrical and computer engi-

neering from Georgia Tech. He is a mem-

ber of IEEE and the ACM. Contact him at

abegen@cisco.com.

Tankut Akgul is in the Service Provider

Video Technology Group at Cisco. His

research interests are embedded soft-

ware design, video compression, and

multimedia streaming. Akgul has a PhD

in electrical and computer engineer-

ing from Georgia Tech. Contact him at

akgult@cisco.com.

Mark Baugher is in the Research and

Advanced Development group at Cisco.

He has coauthored several widely used

international standards in the IETF and

ISMA, and is currently cochairing the

Internet Gateway Device Working Com-

mittee in the UPnP Forum. Baugher has

an MA in computer science from the Uni-

versity of Texas at Austin. Contact him at

mbaugher@cisco.com.

Selected CS articles and columns
are also available for free at http://

ComputingNow.computer.org.

How well do you know the software development process?

Rise to the challenge by taking the CSDA or CSDP Examination.

With more and more employers seeking credential holders,

it’s a great time to add this unique credential to your resume.

WWW.COMPUTER.ORG/GETCERTIFIED

Think You Know Software?

PROVE IT!

ertified

oftware

evelopme
nt

rofession
al

IC-15-02-Spotlight.indd 63 2/24/11 5:54 PM

