
Spotlight

54  Published by the IEEE Computer Society 1089-7801/11/$26.00 © 2011 IEEE IEEE INTERNET COMPUTING

S ummer 2010, time for the 19th FIFA World 
Cup. It was an exhilarating month, with 
64 matches played by 32 national teams. 

Unsurprisingly, the World Cup is one of the most 
watched events worldwide, and this year marked 
the first time that viewers had the chance to 
see games broadcast in 3D. But more impor-
tantly, many more viewers than ever watched 
the games over the Web. With recent develop-
ments in video streaming technologies and 
the increase in broadband Internet access pen-
etration, fans enjoyed watching games in high- 
definition or near-HD quality on their comput-
ers, smartphones, and other connected devices, 
including their TVs. In the US, 45 percent of 
the daily World Cup TV audience watched the 
matches in a non-home environment or on  
a non-TV platform (www.espnmediazone3.
com/us/2010/07/espn-xp-world-cup-dispatch-
4-through-742010). ESPN3.com reached more 
than 7 million unique viewers and delivered 15 
million hours of content.

Just a few months prior, we witnessed the 
same phenomenon with the Vancouver 2010 
Winter Games. In Canada, where the popu-
lation is approximately 34 million, almost  
4 million unique viewers watched the games on 
the Internet. CTV, the national TV network that  

broadcast the games, made 300 events available 
on the Web. Canadian Internet users consumed a 
total of 6.3 million hours of live and 0.9 million 
hours of on-demand content, resulting in a total 
6.2 Pbytes delivered in about two weeks (www.
microsoft.com/casestudies/Case_Study_Detail.
aspx?casestudyid=4000007347). Two years ago,  
the Beijing Summer Games similarly attracted 
online viewers, both for live and on-demand 
viewing, with NBC delivering more than 1,100 
years of video content to almost 52 million unique 
online viewers in the US during the games.

Sporting events aren’t the sole type of con-
tent attractive to online viewers, though. In the 
past few years, many providers have started 
making their regular and premium content 
such as news, series, shows, and movies avail-
able on their Web sites. Despite geographical 
restrictions on many of these Web sites, con-
sumers saw a proliferation in the amount of 
content they had access to. Some content pro-
viders and TV channels don’t impose restric-
tions on viewer location, and thus transformed 
from being a regional TV source to a global 
one, extending their reach for ad revenues in 
an unforeseen manner.

In this first installment of a two-part series, we 
describe the impetus behind this shift, focusing  
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on several streaming solutions that 
exist today.

Thirsty for Streams
Consumers’ desire to access practi-
cally limitless amounts of content 
any time they want and the drop in 
delivery costs hastened the deploy-
ment of streaming services. New 
Web sites that handle content aggre-
gation such as Hulu emerged. In May 
2010, Hulu had more than 40 million 
unique viewers in the US, streaming 
more than 1 billion videos per month 
(www.comscore.com/Press_Events/
Press_Releases/2010/6/comScore_
Releases_May_2010_U.S._Online_
Video_Rankings). Remarkably, these 
numbers are steadily increasing. 
Netflix, the largest subscription 
service for DVD rental and stream-
ing video, currently has over 20 mil-
lion subscribers, many of whom use 
its streaming services on a vari-
ety of devices (www.netflix.com/
MediaCenter?id=5379).

We can divide Internet video, 
also known as over-the-top (OTT) 
services, into distinct categories of 
user-generated content from mostly 
amateurs (such as the content served 
by YouTube), professionally generated 
content from studios and networks 
to promote their commercial offer-
ings and programming (such as what 
you find on ABC.com or Hulu), and 
direct movie sales to consumers over 
the Internet (also referred to as elec-
tronic sell-through, or EST). In the 
last category, Netflix, Apple TV, and 
new undertakings such as UltraViolet 
are greatly increasing the amount of 
video offerings on the Internet.

Cisco’s Visual Networking Index 
(VNI) suggests that traffic volumes 
in the order of tens and hundreds 
of exabytes (1 billion Gbytes) and 
zettabytes (1,000 Ebytes) aren’t that 
remote. Over the next few years, 
90 percent of the bits carried on 
the Internet will be video related 
and consumed by more than 1 bil-
lion users. Although some portion of 

these video bits will be for managed 
services such as cable TV and IPTV, 
we can’t ignore the amount of bits for 
unmanaged (OTT) services.

Cable and IPTV services run over 
managed networks for distribution 
because these services use multi-
cast transport and require certain 
quality-of-service (QoS) features.1 
In contrast, conventional streaming 
technologies such as Microsoft Win-
dows Media, Apple QuickTime, and 
Adobe Flash, as well as the emerg-
ing adaptive streaming technologies 
such as Microsoft’s Smooth Stream-
ing, Apple’s HTTP Live Streaming, 
and Adobe’s HTTP Dynamic Stream-
ing, run over mostly unmanaged 
networks. These streaming technolo-
gies send the content to the viewer 

over a unicast connection (from a 
server or content delivery network 
[CDN]) through either a proprietary 
streaming protocol running on top 
of an existing transport protocol, 
mostly TCP and occasionally UDP,  
or the standard HTTP protocol  
over TCP.

Historically, progressive down-
load, which uses HTTP over TCP, has 
been quite popular for online content 
viewing due to its simplicity. In pro-
gressive download, the playout can 
start as soon as enough necessary 
data is retrieved and buffered. Today, 
YouTube delivers more than 2 bil-
lion videos daily with this approach. 
However, progressive download 
doesn’t offer the flexibility and rich 
features of streaming. Before the 
download starts, the viewer must 
choose the most appropriate version 

if there are multiple offerings with 
different resolutions for the same 
content. If there isn’t enough band-
width for the selected version, the 
viewer might experience frequent 
freezes and rebuffering. Trick modes, 
such as fast-forward seek/play or 
rewind, are often unavailable or lim-
ited. These limitations are likely to 
inhibit the growth of large volume 
(including HD) movie distribution on 
the Internet. A new approach, which 
we refer to as adaptive streaming, is 
emerging to address these shortcom-
ings while preserving the simplicity 
of progressive download.

Adaptive streaming is a hybrid of 
progressive download and streaming. 
On one hand, it’s pull-based, as is 
progressive download: the adaptive 

streaming client sends HTTP request 
messages to retrieve particular seg-
ments of the content from an HTTP 
server and then renders the media 
while the content is being transferred. 
On the other hand, these segments are 
short, enabling the client to download 
only what’s necessary and use trick 
modes much more efficiently, giv-
ing the impression that the client is 
streaming. More importantly, short-
duration segments (for example, 
MPEG4 file fragments) are available 
at multiple bitrates, corresponding to 
different resolutions and quality lev-
els, so the client can switch between 
different bitrates at each request. The 
client player strives to always retrieve 
the next best segment after examin-
ing a variety of parameters related 
to available network resources, such 
as available bandwidth and the state 

Historically, progressive download, which  
uses HTTP over TCP, has been quite popular  
for online content viewing due to its  
simplicity.
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of the TCP connections; device capa-
bilities, such as display resolution and 
available CPU; and current stream-
ing conditions, such as playback buf-
fer size. The goal is to provide the best 
quality of experience by displaying the 
highest achievable quality, starting up 
faster, enabling quicker seeking, and 
reducing skips, freezes, and stutters.

Because adaptive streaming uses 
HTTP, it benefits from the ubiqui-
tous connectivity that HTTP has to 
offer. Today, practically any con-
nected device supports HTTP in 
some form. It’s a pull-based protocol 
that easily traverses middleboxes, 
such as firewalls and NAT devices. 
It keeps minimal state information 
on the server side, which makes 
HTTP servers potentially more scal-
able than conventional push-based 
streaming servers. To the existing 
HTTP caching infrastructure, adap-
tive streaming is no different than 
any other HTTP application. Indi-
vidual segments of any content are 
separately cacheable as regular Web 
objects using HTTP or any RESTful 
(conforming to the Representational 
State Transfer constraints) Web pro-
tocol. This allows distributed CDNs 
to greatly enhance the scalability of 
content distribution.

Media Streaming
Transmission of content between 
different nodes on a network can be 
performed in a variety of ways. The 
type of content being transferred 
and the underlying network condi-
tions usually determine the methods 
used for communication. For simple 
file transfer over a lossy network, 
the emphasis is on reliable delivery: 
added redundancy protects packets 
against losses, or retransmission can 
recover lost packets. When it comes 
to audio/video media delivery with 
real-time viewing requirements, the 
emphasis is on low latency and jit-
ter, and efficient transmission; occa-
sional losses might be tolerated in 
this case. The structure of the packets  

and algorithms used to transmit real-
time media on a given network col-
lectively define the media streaming 
protocol. Although various media 
streaming protocols available today 
differ in implementation details, we 
can classify them into two main 
categories: push- and pull-based 
protocols. 

Push-Based Media  
Streaming Protocols
In push-based streaming protocols, 
once a server and a client establish 
a connection, the server streams 
packets to the client until the client 
stops or interrupts the session. Con-
sequently, in push-based stream-
ing, the server maintains a session 
state with the client and listens for 
commands from the client regard-
ing session-state changes. Real-time 
Streaming Protocol (RTSP), specified 
in RFC 2326, is one of the most com-
mon session control protocols used 
in push-based streaming. 

Push-based streaming protocols 
generally utilize Real-time Transport 
Protocol (RTP), specified in RFC 3550, 
or equivalent packet formats for data 
transmission. RTP usually runs on 
User Datagram Protocol (UDP), a 
protocol without any inherent rate-
control mechanisms. This lets the 
server push packets to the client  
at a bitrate that depends on an  
application-level client/server imple-
mentation rather than the underlying 
transport protocol, and makes RTP 
a nice fit for low-latency and best-
effort media transmission.

In conventional push-based 
streaming, the server transmits con-
tent at the media encoding bitrate to 
match the client’s media consump-
tion rate. In normal circumstances, 
this ensures that client buffer lev-
els remain stable over time. It 
also optimizes the use of network 
resources because the client usu-
ally can’t consume at a rate above 
the encoding bitrate; consequently, 
transmitting above that rate would 

unnecessarily load the network. 
Moreover, transmission above the 
encoding bitrate might not be even  
possible for live streams in which the 
stream is encoded on the fly. How-
ever, if packet loss or transmission 
delays occur over the network, the 
client’s packet retrieval rate can drop 
below its consumption rate, which 
might drain its buffer and eventu-
ally result in a buffer underflow 
that interrupts the playback. This is 
where bitrate adaptation comes into 
play.

To prevent a buffer underflow, 
the server can dynamically switch to 
a lower-bitrate stream. This, in turn, 
reduces the media consumption rate 
at the client side and counteracts the 
effect of network bandwidth capac-
ity loss. Because a sudden drop in 
the encoding bitrate can result in a 
noticeable visual quality degrada-
tion, this reduction should occur in 
multiple intermediate steps until the 
client’s consumption rate matches 
or drops below its available receive 
bandwidth. When network condi-
tions improve, the server does the 
opposite and switches to a higher-
bitrate stream — again, in multiple 
intermediate steps to avoid a sudden 
network overload. Provided that the 
stream isn’t live and the network 
capacity allows for a higher-bitrate 
transmission, the server can also 
choose to send packets at a higher 
rate than the media encoding rate 
to fill up the client’s buffer. By 
dynamically monitoring available 
bandwidth and buffer levels and by 
adjusting the transmission rate via 
stream switching, push-based adap-
tive streaming can achieve smooth 
playback at the best possible quality 
level without pauses or stuttering.

Bandwidth monitoring is usually 
performed on the client, which also com-
putes network metrics such as round-
trip time (RTT), packet loss, and network 
jitter periodically. The client can use this 
information directly to make decisions 
about when to switch to a higher or a 
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lower-bitrate stream, or it can commu-
nicate this information along with its 
buffer levels to the server via receiver 
reports and let the server make those 

decisions. Such reports are usually 
transmitted via RTP Control Protocol 
(RTCP). See the “Bitrate Adaptation in 
3GPP” sidebar for more information.

Pull-Based Media  
Streaming Protocols
In pull-based streaming protocols, 
the media client is the active entity 

Bitrate Adaptation in 3GPP

The 3rd Generation Partnership 
Project (3GPP) is a collaboration 

between telecommunications asso-
ciations whose scope is to produce 
technical specifications for 3G mobile 
systems based on Global System for 
Mobile Communications (GSM) net-
works. Popular push-based streaming 
servers such as RealNetworks Helix 
or Apple QuickTime use the bitrate 
adaptation mechanisms defined in 
3GPP standards.

In its Release 6, 3GPP defined mech-
anisms for the media client to inform the 
media server about dynamically switch-
ing the transmission bitrate.1,2 The 
algorithms that adapt the bitrate are 
implementation-specific. These algo-
rithms collect real-time statistics about 
available bandwidth and client buffer  
levels. In a typical implementation, the 
process goes as depicted in Figure A.

During session setup, the server 
sends a list of available streams and their properties such as bitrate 
and codec to the client via Session Description Protocol (SDP), 
specified in RFC 4566, in response to the client’s RTSP DESCRIBE 
message. After receiving the session description, the client picks 
from within the available audio and video streams that best fit with 
its link speed and decoding capabilities. Then, the client sends RTSP 
SETUP messages (one for each unique audio and video stream) 
to the server to prepare it to send out the selected streams. 
The RTSP message header contains a 3GPP-Adaptation  
parameter that informs the server about the client’s buffer size 
(size attribute) and minimum required buffering (target-time 
attribute) to ensure interrupt-free playback. It also contains a 
3GPP-Link-Char parameter that provides information about 
the client’s guaranteed receive bandwidth (GBW attribute). 

After the server obtains information about the client’s buf-
fer and receive bandwidth, it sets up a buffer model to simulate 
the changes in the client’s receive buffer levels. In this model, 
the server tries to satisfy the minimum required buffer level 
while preventing any overflows. Because network conditions 
and buffering requirements can change over time, the client 
keeps notifying the server via periodic RTCP receiver reports. 
These messages carry information such as available free space 
in the client’s receive buffer, playout delay (the time difference 

between the presentation time of the next frame in the decoder 
buffer and the time the RTCP message is sent), and estimated 
network bandwidth. Using this information, the server can 
maintain an accurate model of the client’s receive buffer and 
make informed decisions about when to switch to a higher- or 
lower-bitrate stream dynamically.

The upshift and downshift buffer level thresholds for the 
stream are usually preprogrammed on the server. For instance, 
if the server detects that the client’s buffer level is below the 
next downshift threshold, it switches to the next lower encod-
ing rate available to prevent the buffer from draining any further. 
On the other hand, if the buffer level exceeds the next upshift 
threshold, the server switches to the next higher encoding rate, 
provided that the network bandwidth can support that rate. If 
not, the server might choose to slow down the transmission 
rate to prevent a buffer overflow. 
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Figure A. Example 3GPP streaming session setup with bitrate adaptation.
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that requests content from the media 
server. Therefore, server response 
depends on the client’s requests when 
the server is otherwise idle or blocked 
for that client. Consequently, the 
bitrate at which the client receives 
the content depends on the client and 
available network bandwidth. As the 
Internet’s primary download proto-
col, HTTP is a common protocol for 
pull-based media delivery.

Progressive download is one of 
the most widely used pull-based 
media streaming methods available 
on IP networks today. In progressive 
download, the media client issues an 
HTTP request to the server and starts 
pulling content from it as quickly 
as possible. Once the client fills up 
a minimum required buffer level, it 
starts playing the media while con-
tinuing to download content from the 
server in the background. As long as 
the download rate isn’t smaller than 
the playback rate, the client buffer 
stays at a sufficient level to con-
tinue an uninterrupted playback. How-
ever, if network conditions degrade, 

download rate can fall behind the 
playback rate, which might cause an 
eventual buffer underflow.

Similar to methods used in push-
based streaming, pull-based stream-
ing protocols use bitrate adaptation 
to prevent buffer underflow. Figure 1 
shows an example implementation, 
where the media content is divided 
into short-duration media segments 
(also called fragments), each of which 
is encoded at various bitrates and can 
be decoded independently. When the 
client plays the fragments back to 
back, it can seamlessly reconstruct the 
original media stream. During down-
load, the media client dynamically  
picks the fragment with the right 
encoding bitrate that matches or is 
below the available bandwidth and 
requests that fragment from the 
server. This way, the client can adapt 
its media-consumption rate according 
to the available receive bandwidth.

Although media fragment struc-
tures differ among implementations, 
the basic principle for fragment con-
struction is the same. When audio 

and video aren’t interleaved, each 
audio frame usually consists of con-
stant duration audio samples in the 
milliseconds range, and each frame is 
usually decodable on its own for com-
mon audio codecs. Therefore, one can 
easily stuff audio data into a media 
fragment by combining a sufficient 
number of audio frames to match the 
fragment duration. For video, on the 
other hand, the frames aren’t neces-
sarily independently decodable due 
to temporal prediction commonly 
applied between the frames. There-
fore, for video, the partitioning for 
fragment construction is performed 
at the group of pictures (GoP) bound-
ary instead. In video coding, a GoP is 
a frame sequence that starts with an 
intra-coded frame (I-frame) that can 
be decoded independently, followed 
by predicted frames that depend on 
other frames. If the predicted frames 
within a GoP depend only on the 
frames within that same GoP, we 
call it a closed GoP — otherwise, it’s 
an open GoP. Because a closed GoP 
is self-contained (meaning it can be 
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Figure 1. Example bitrate adaptation in pull-based adaptive streaming showing how a client reacts to network 
conditions.
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decoded independently from other 
GoPs), one can construct a fragment 
from it rather straightforwardly. The 
encoder simply adjusts the number 
of frames in the GoP such that the 
total duration of its frames is equal to 
the desired fragment duration. How-
ever, if the fragment duration is large 
compared to a typical GoP size, we’ll 
want to pack more than one GoP into 
a fragment.

Let’s look more closely at two dif-
ferent implementations of pull-based 
adaptive streaming protocols that are 
based on multi-bitrate fragments.

Microsoft Smooth  Streaming. Micro-
soft’s Smooth Streaming implementa-
tion is based on Protected Interoperable 
File Format (PIFF; http://go.microsoft.
com/?linkid=9682897), which is an  
extension of the MPEG4 (MP4) file 
format specification (www.iso.org/iso/ 
catalogue_detail.htm?csnumber=51533). 
In Smooth Streaming, all fragments 
with the same bitrate are stored in a 
single MP4 file. Therefore, each avail-
able bitrate has a separate file. Frag-
ments are usually two seconds long 
and typically contain a single GoP.

Figure 2 shows a fragmented MP4 
file. A fragmented MP4 file is com-
posed of a hierarchical data struc-
ture. The most basic building block 
of this hierarchy is called a box; it 
can contain audio/video data and 
metadata. Each box type is des-
ignated by a four-letter identifier. 
The file starts with an ftyp box that 
describes the version information 
for the specifications with which the 
file complies, followed by a moov 
box that describes the media tracks 
available in the file. The audio/
video media data for a single frag-
ment is contained within a box of 
type mdat. In a fragmented MP4 
container structure, an mdat box is 
immediately preceded by a box of 
type moof, which contains metadata 
for that fragment. The moof box can 
also contain signaling information, 
such as a sequence counter for the 

fragment, the number of samples 
within the fragment, and each sam-
ple’s duration.

For the client to request a frag-
ment with a specific bitrate and start 
time, it first needs to know which 
fragment(s) are available on the 
server. This information is communi-
cated to the client at the beginning of 
the session via a client-side manifest 
file. In addition to bitrates, this file 
describes codecs, video resolutions, 
captions, and other auxiliary infor-
mation for the available streams.

Once the client downloads the 
manifest file, it uses the informa-
tion in this file to make HTTP GET 
requests to the server for the indi-
vidual fragments. Each fragment 
is downloaded via a unique HTTP 
request-response pair. The HTTP 
request message header contains two 
pieces of information: the bitrate and 
the requested fragment’s time offset 
(see Figure 3). 

When the server gets an HTTP-
encapsulated request from the cli-
ent for a particular media fragment, 
it first needs to determine which 
MP4 file to search for that fragment. 
This information is contained in 
another manifest file, the server-side  

manifest, which maps MP4 files to 
the bitrates of the fragments they 
contain. The server looks up the 
bitrate information it receives from 
the client in the manifest file and 
determines the corresponding MP4 
file to search.

After the server determines the 
correct file, the next step is to locate 
the requested fragment in that file. 
This is achieved via indexing data. 
As Figure 2 shows, an MP4 file also 
contains boxes of type mfra that con-
tain a fragment’s location and pre-
sentation time. The media server uses 
the time offset information it receives 
from the client to find a match with a 
fragment index in the MP4 file. Once 
the server locates the fragment in the 
file, it sends the contained moof box 
followed by the mdat box, and these 
make up the fragment on the wire.

Apple HTTP Live Streaming. Apple’s 
HTTP Live Streaming implementa-
tion (http://tools.ietf.org/html/draft-
pantos-http-live-streaming) follows 
a different approach for fragment 
(referred to as media segment in the 
implementation) storage, which is 
based on the ISO/IEC 13818-1 MPEG2 
Transport Stream file format. As 
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Figure 2. Fragmented MP4 file format structure. The audio and video  
data are in mdat boxes, which together with the metadata form a  
fragment that is retrieved in an HTTP GET request. (Image adapted from  
http://alexzambelli.com/blog/2009/02/10/smooth-streaming-architecture/.)

GET /sample/v_720p.ism/QualityLevels(1500000)/Fragments(video=160577243) HTTP/1.1

Figure 3. Example HTTP request message for downloading a fragment.
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opposed to Smooth Streaming, each 
media segment is stored in a separate 
transport stream file. A stream seg-
mentation process reads a continuous  
transport stream file and divides it into 
equal-duration segments of 10 seconds 
by default. Longer fragment duration 
reduces the number of fragments. 
Longer fragments also allow better 
compression because they have more 
temporal redundancy. However, it 
also reduces the granularity at which 
fragment-switching decisions can be 
made, which means it might not be as 
good in terms of adapting to dynamic 
bandwidth changes.

Similar to Microsoft’s Smooth 
Streaming implementation, a client-
side manifest file keeps a record of 
the media segments available for the 
client. The manifest file format is an 
extension to the MP3 playlist file stan-
dard; Figure 4 shows an example of 
the manifest files organized in a two-
level hierarchy. Each file starts with an 
EXTM3U tag that distinguishes it from 
an ordinary MP3 playlist. The file on 
the left is a higher-level file that links 
to two other lower-level files on the 
right. The link for each lower-level file 
is specified in a URI that’s always pre-
ceded by an EXT-X-STREAM-INF tag.  

This tag has an attribute named 
BANDWIDTH that indicates the corre-
sponding lower-level file is a mani-
fest for an alternate encoding of the 
segments it lists. In the example, the 
stream has two alternate encodings 
for each segment — that is, one low-
quality (100 Kbps) encoding and one 
high-quality (2 Mbps) encoding.

The lower-level files on the right 
provide the links for the individual 
media segments available for down-
load. Following the EXTM3U tag is an 
EXT-X-MEDIA-SEQUENCE tag that lists 
the sequence number of the first seg-
ment in the playlist. Each segment 
typically has a unique sequence num-
ber that changes in single increments, 
starting from the first segment’s 
sequence number. The URIs for the 
individual segments are marked with 
an EXTINF tag. This tag has an attribute 
separated by a semicolon that indicates 
the duration of the corresponding 
media segment. In the example, each 
segment is 10 seconds long.

For fixed-duration streams, EXT-
X-ENDLIST marks the end of the 
playlist. This tag doesn’t exist in 
live streams where the playlist can 
grow dynamically. In the case of live 
streams, the client must periodically 
refetch an updated manifest. The 
period for refetching the manifest 
depends on whether the manifest 
file has changed since the last time 
it was reloaded. If the manifest has 
changed, the period is the duration of 
the last media segment in the play list 
(which is specified by the EXTINF tag). 
If the manifest hasn’t changed, then 
the period is a multiple of the dura-
tion specified by the EXT-X-TARGET-
DURATION tag. This tag indicates the 
maximum EXTINF value of any media 
file that can be added to playlist and is 
constant throughout the manifest file. 

Example Functional Diagram  
for Client-Side Pull-Based 
Adaptive Streaming
Figure 5 illustrates a generic client-
side pull-based adaptive streaming 

#EXTM3U
#EXT-X-STREAM-INF:PROGRAM-ID=1,BANDWIDTH
   =2000000
http://example.com/hq/prog1.m3u8

#EXT-X-STREAM-INF:PROGRAM-ID=1,BANDWIDTH
   =100000
http://example.com/lq/prog1.m3u8

#EXT-X-ENDLIST

#EXTM3U
#EXT-X-MEDIA-SEQUENCE:0
#EXT-X-TARGETDURATION:10
#EXTINF:10,
http://example.com/segment
   -HQ1.ts
#EXTINF:10,
http://example.com/segment
   -HQ2.ts

...
#EXT-X-ENDLIST

#EXTM3U
#EXT-X-MEDIA-SEQUENCE:0
#EXT-X-TARGETDURATION:10
#EXTINF:10,
http://example.com/segment
   -LQ1.ts
#EXTINF:10,
http://example.com/segment
   -LQ2.ts

...
#EXT-X-ENDLIST

Figure 4. Example showing HTTP Live Streaming playlists.

Request

Response

Client manages

• Manifest(s)
• HTTP transport
• TCP connection(s)

Client performs adaptation

Client monitors/measures

• Playout buffer
• Download times and throughput
• Local resources (CPU, memory, screen, etc.)
• Dropped frames

Network

Figure 5. A client-side pull-based adaptive streaming implementation.
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implementation. At minimum, the 
server provides standard responses 
to HTTP GET requests. The client 
gets a manifest file that identifies 
files containing media presentations  
at alternative bitrates. The client 
acquires media from fragments of a file 
over one or more connections accord-
ing to the playout buffer state and 
other conditions.

The basic client/server adaptive 
streaming configuration requires 
the general functions shown on the 
client-side of Figure 5:

•	 The client needs a file, called a 
client-side manifest or a playlist, 
to map fragment requests to spe-
cific files or to map byte ranges 
or time offsets to files. In some 
adaptive streaming schemes, a 
similar file on the server trans-
lates client requests.

•	 Playout buffer management is a 
basic function required on any 
adaptive streaming client, to select 
fragments from a file at a particular 
bitrate in response to buffer state 
and potentially other variables. 
Typically, an adaptive streaming 
client keeps a playout buffer of sev-
eral seconds (between five and 30).

•	 A transport is needed to commu-
nicate requests from the client to 
the server; the pull-based adap-
tive streaming schemes that we 
survey in this article use HTTP 
GET requests, either to a standard 
HTTP Web server or to a special-
ized Web services API supported 
by a special service on the server 
(such as a Smooth Streaming 
Transport application running on 
Microsoft’s Internet Information 
Services server).

•	 GET requests use a single TCP 
connection by default, but some 
adaptive streaming implemen-
tations support using multiple 
concurrent TCP connections for 
requesting multiple fragments at 
the same time or for pulling audio 
and video in parallel.

The client is preconfigured to 
request a content at a certain bitrate, or 
profile, based on the result of network 
tests or a simple configuration script. 
When a profile is selected and the 
client finds the URI associated with 
it in the manifest, it establishes one 
or more connections to the server.  
We’ve observed that different products 
employ different strategies — for 
example, some use only one TCP 
connection for GET requests to a 
file whereas others open and close 
multiple TCP connections during an 
adaptive streaming session. As the 
client monitors its buffer, it might 
choose to upshift to a higher-bitrate 
profile or downshift to a lower one, 
depending on how much the rate 
of video transport does or does 
not exceed the playout rate. Some 

adaptive streaming products open a 
new connection when upshifting or 
downshifting to a new profile.

Alternative Methods  
for Bitrate Adaptation
We’ve described adaptive streaming 
methods that work based on the prin-
ciple of switching between alternate 
encodings of a content as a whole 
or switching between individual 
fragments of it encoded at several 
bitrates. An alternative technology 
called Scalable Video Coding (SVC) 
lets clients choose media streams 
appropriate for underlying network 
conditions and their decoding capa-
bilities. SVC has been standardized 
as an extension to the H.264/MPEG4 

AVC video compression specifica-
tion; in its current form, it applies to 
video streams only.

In SVC, a video bitstream is made 
up of a hierarchical structure of lay-
ers. The base layer provides the lowest 
level of quality in terms of frame rate, 
resolution, and signal-to-noise ratio 
(SNR). Each enhancement layer on top 
of the base layer provides an improve-
ment for one or more of these scalable 
quality parameters. Enhancement 
layers can be independently stored or 
sent over the network. Therefore, we 
can modify the overall stream bitrate 
by selectively adding or removing 
enhancement layers to and from a 
stream. 

The quality knobs in SVC are 
referred to as temporal, spatial, and 
SNR scalability. Temporal scalability 

provides a way to add or drop com-
plete pictures to and from a stream. It 
isn’t a new concept; in its most basic 
form, traditional push-based stream-
ing servers have used it in terms of 
a method known as stream thinning. 
Spatial scalability, on the other hand, 
encodes video signal at multiple reso-
lutions. The client can use the recon-
structed lower-resolution frames 
to predict and reconstruct higher-
resolution frames with the added 
information sent in the enhancement 
layers. SNR scalability encodes the 
video signal at a single resolution but 
at different quality levels by modi-
fying the encoding precision. Each 
enhancement layer increases the pre-
cision of the lower layers.

As the client monitors its buffer, it might 
choose to upshift to a higher-bitrate profile or 
downshift to a lower one, depending on how 
much the rate of video transport does or does 
not exceed the playout rate.
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A key advantage of SVC lies in 
its ability to distribute information 
among various layers with minimal 
added redundancy. In other words, 
while a stream that’s traditionally 
encoded at different quality levels 
has significant redundancy between 
the encodings, each layer in an SVC-
encoded stream has minimal com-
mon information between the layers. 
This makes SVC efficient for media 
storage at various quality levels. 
Another advantage of SVC is the 
graceful degradation of stream qual-
ity without client or server interven-
tion when packets from enhancement 
layers can’t be delivered due to 
abrupt changes in network condi-
tions. This is in contrast to multi-
bitrate encoding, which requires 
switching from one encoding to 
another via a client or server deci-
sion to adjust to changes in network 
conditions. SVC streams are typi-
cally more complex to generate and 
impose codec restrictions compared  
to multi-bitrate streams. Thus, the 
adoption rate for SVC has been 
rather slow.

Comparison of Push- vs. Pull-
Based Streaming Protocols
Table 1 summarizes the differ-
ences between push- and pull-based 
streaming (here, pull-based stream-
ing exclusively refers to streaming 
over HTTP). One of the main differ-
ences between push- and pull-based 
streaming is the server architecture’s 
complexity. As mentioned earlier,  

in pull-based streaming, bitrate 
management is usually a client task, 
which significantly simplifies the 
server implementation. Furthermore, 
pull-based streaming can run on top 
of HTTP. Therefore, with minor pro-
visions, an ordinary Web server can 
serve media content in pull-based 
streaming, although complexities 
can arise in streaming live content 
to a large number of clients.

Push-based streaming, on the 
other hand, requires a specialized 
server that implements RTSP or a 
similar purpose-built protocol with 
built-in algorithms for tasks such as 
bitrate management, retransmission, 
and content caching. This may make 
pull-based streaming more cost-
effective compared to push-based 
streaming.

Despite the lower server costs, 
pull-based streaming is usually less 
efficient, overhead-wise, than push-
based streaming due to the underly-
ing transport protocol. Compared to 
HTTP over TCP, RTP imposes a lower 
transmission overhead. Moreover, 
because RTP usually runs on top of 
UDP, the retransmission dynamics 
and congestion control mechanisms 
of TCP don’t inherently exist in RTP.

Both push- and pull-based 
streaming protocols allow client buff-
ering both at the beginning of a session 
and also after trick-mode transitions 
such as fast forward to play. This is 
performed to prevent buffer under-
flows and achieve a smooth playback 
experience. In adaptive streaming 

methods, the initial client buffering 
duration can be substantially less  
than nonadaptive streaming meth-
ods due to the fact the client can 
begin with a lower-bitrate stream. 
This allows fast startup and increases 
responsiveness. 

But one of the key benefits of 
push-based streaming is multicast 
support. Multicast lets servers send 
a packet only once to a group of cli-
ents waiting to receive that packet. 
The packet is duplicated along the 
network path in an optimal way, 
and a client can join or leave a mul-
ticast group on demand. This way, 
a client can receive only the pack-
ets it wants. Pull-based streaming, 
on the other hand, works based on 
the unicast delivery scheme, which 
offers a one-to-one path between the 
server and each client. Therefore, in 
the worst case, a server has to send 
a packet as many times as the num-
ber of clients requesting that packet, 
and, similarly, a network node in the 
middle has to pass along the same 
packet multiple times. This reduces 
network efficiency. 

Routing and packet delivery over 
the network can be made more effi-
cient by using content caching. The 
content is cached along the network 
on dedicated cache servers. This 
way, a client can obtain content from 
a nearby cache server in the network 
instead of going all the way up to 
the origin server. The most efficient 
use of caching is most likely in pull-
based adaptive streaming, where 
each fragment can be cached in the 
network independently.

T he popularity of watching tradi-
tional broadcast TV programming 

is weakening every day against the 
Web’s onslaught. Consumers can 
access Web content not just from 
a TV in the living room but from 
a variety of devices in a variety of 
places connected through different 
types of access networks. Adaptive 

Table 1. Comparison between push- and pull-based streaming protocols.

Push-based Pull-based

Source Broadcasters and servers 
like Windows Media, Apple 
QuickTime, RealNetworks Helix, 
Cisco CDS/DCM

Web servers such as 
LAMP, Microsoft IIS, 
RealNetworks Helix, 
Cisco CDS

Protocols RTSP, RTP, UDP HTTP

Bandwidth usage Likely more efficient Likely less efficient

Video monitoring 
and user tracking

RTCP for RTP transport Currently proprietary

Multicast support Yes No
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streaming methods that can deal 
with the challenges presented by 
this variety as well as the scalability 
of content distribution to large audi-
ences are further accelerating this 
trend transition, which will certainly 
impact existing business models and 
create new revenue opportunities. 
In the second part of this article, we 
look into applications for streaming, 
contrast adaptive approaches with 
other video delivery paradigms, dis-
cuss current standardization efforts, 
and highlight areas that still require 
further research and investigation. 
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