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The key to high performance in image sequence coding lies in an 
efficient reduction of the temporal redundancies. For this purpose, 
motion estimation and compensation techniques have been suc­
cessfully applied. This paper studies motion estimation algorithms 
in the context of first generation coding techniques commonly used 
in digital TV. In this framework, estimating the motion in the 
scene is not an intrinsic goal. Motion estimation should indeed 
provide good temporal prediction and simultaneously require low 
overhead information. More specifically, the aim is to minimize 
globally the bandwidth corresponding to both the prediction error 
information and the motion parameters. This paper first clarifies 
the notion of motion, reviews classical motion estimation tech­
niques, and outlines new perspectives. Block matching techniques 
are shown to be the most appropriate in the framework of first 
generation coding. To overcome the drawbacks characteristic of 
most block matching techniques, this paper proposes a new locally 
adaptive multigrid block matching motion estimation technique. 
This algorithm has been designed taking into account the above 
aims. It leads to a robust motion field estimation, precise prediction 
along moving edges and a decreased amount of side information in 
uniform areas. Furthermore, the algorithm controls the accuracy 
of the motion estimation procedure in order to optimally balance 
the amount of information corresponding to the prediction error 
and to the motion parameters. Experimental results show that the 
technique results in greatly enhanced visual quality and significant 
saving in terms of bit rate when compared to classical block 
matching techniques. 

I. INTRODUCTION 

Recent advances in digital technology have led to new 

communication media in which visual information plays the 

key role. Digital TV, high definition TV, videoconferenc­

ing, video-telephony, medical imaging, archiving, virtual 

reality, and multimedia are some examples of emerging 

applications. 
When compared to audio or text information, video 

signals require a huge amount of bandwidth. Despite the 
increase of storage capacity and the development of broad­

band networks, compression techniques are needed. Image 
compression techniques rely on two principles: the reduc-
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tion of the statistical redundancies in the data and the 

exploitation of the human visual system. Reviews of image 

compression techniques can be found in [IJ-[5]. 

In the framework of video coding, the statistical redun­

dancies can be categorized either as spatial or temporal. Due 

to the different nature of the video signal along the spatial 

and temporal dimensions, the latter are generally processed 
separately. Coding techniques which reduce the spatial 

correlation are referred to as intraframe coding, whereas 

those which tackle the temporal correlation are called 

interframe techniques. Compared to still-image coding, the 

challenge of image sequence coding lies in an efficient 

reduction of the temporal correlation. 

For the purpose of reducing temporal redundancies, mo­

tion estimation techniques have been successfully applied 

[3], [6]-[8]. They belong to the class of nonlinear predictive 

coding techniques. In a first stage, the displacement of 

objects between successive frames is estimated (motion esti­

mation). The resulting motion information is then exploited 

in efficient interframe predictive coding (motion compen­

sation). Consequently, the prediction error is transmitted 

instead of the frame itself. The motion information also 

has to be transmitted, unless the decoder is able to estimate 

the motion field. An efficient representation of the motion 

is thus critical in order to reach high performance in video 

coding. 

The requirements of motion estimation techniques in the 
framework of video coding can now be explicitly defined. 

These requirements are mutually contradictory. Motion 

estimation techniques should on the one hand provide good 

prediction, but on the other hand have a low overhead 

information. More specifically, the tradeoff between motion 

information and prediction error information has to be 

considered. The purpose of motion estimation techniques 

is indeed to globally minimize the sum of these two terms. 

Research effort devoted to this important point is regretfully 

sparse. The determination of the motion is not the intrinsic 

goal. Nevertheless, a motion field representative of the true 

motion in the scene is desired in order to avoid artificial 
discontinuities in the motion compensated prediction and 

to reduce the transmission cost of the motion information 

(when it has to be transmitted). 
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This paper reviews classical motion estimation tech­
niques and outlines new perspectives. A new technique 

which overcomes the drawbacks of classical methods is 
then proposed and described in more detail. This paper 
considers only the application of motion estimation for 

the reduction of temporal redundancies and emphasizes the 
framework of the first generation coding schemes adopted 

in recent standards for digital TV. Although in digital TV 
the resulting motion information can also be used for other 

purposes, such as format conversion or deinterlacing, those 
topics will not be discussed in this paper. 

Before going any further, a distinction has to be made 

between two notions: the 2D motion field and the optical 

flow [9]. The former is the projection on the 20 image 

plane of the 3D motion in the scene. The latter is the field 
associated with the spatiotemporal variation of intensity. In 

video coding, motion estimation techniques try to reduce 

the temporal redundancies. The goal is not to assess the 

motion present in a scene, but to model the changes in 

the spatiotemporal intensity and therefore to estimate the 

optical flow. In that respect, the term motion field should 
be understood in the following as the optical flow. 

Thc changes in the spatiotemporal intensity derive from 

three main causes. The first one is called global motion or 

camera motion. Even though no motion may occur in the 
scene, the motion of the camera induces a global motion 

in the captured scene. The second cause is the intrinsic 
motions of the objects in the scene. These can be seen as 

local motions as they do not affect the entire image. The 

third cause is a variation of illumination. If the lighting 
conditions change while the sequence is being captured by 
the camera, the optical flow will be influenced. As camera 

motion (such as pan or zoom) can be efficiently handled 
if it is globally estimated, two-stage globaillocal motion 
estimation have been proposed in [IO]�[12]. However, 
generally no distinction is made between global and local 

motions. The global motion is thus taken into account 

through local estimates of the motion. In this context, the 
motion estimation techniques discussed hereafter rely only 
on local motion estimation. Although algorithms estimating 

the variation of illumination have been proposed [13]-[15], 

as a general rule the variation of illumination is not taken 

into account by the motion estimation techniques. The 

hypothesis is that there is no change of illumination and 
that the variations in the spatiotemporal intensity are due 
only to the global and local motions. 

As far as the local motion estimation techniques are 
concerned, a number of very different algorithms have been 

proposed in the literature and detailed reviews of them are 

given in [3], [16J-[21]. Originally, these algorithms were 
developed for applications such as computer vision, image 
sequence analysis and video coding. They can be divided 

into four main groups: gradient techniques [22]-[25], pel­
recursive techniques [6], [26], [27], block matching tech­

niques [7], [8], and frequency-domain techniques [28]-[30]. 

Among those four groups, only pel-recursive and block 
matching techniques have been specifically developed for 
image sequence coding. In particular, block matching tech-

niques are very suitable in coding schemes based on a 
discrete cosine transform (OCT) such as those adopted by 
the recent standards MPEG-l [31], [32J, MPEG-2 [33], 

[341. and H.261 [35]. Hence, coding applications often rely 
on block matching motion estimation techniques. 

Despite their widespread use, block matching techniques 

share several common drawbacks: unreliable motion fields 

in the sense of the true motion in the scene, block artifacts, 
and poor motion compensated prediction along moving 

edges. In order to remove these drawbacks, a locally 
adaptive multigrid block matching algorithm is proposed 
in this paper [36]. Accurate motion compensated prediction 

and low overhead information constituted the guidelines for 
the development of this algorithm. Consequently, it meets 

the desired features of a motion estimation technique for 

video coding. The algorithm adapts to the spatial content 
of the scene and thus provides accurate prediction in 

detailed areas while requiring a reduced amount of overhead 
information in uniform regions. Furthermore, a criterion is 

used to optimally balance the motion and the prediction 

error information [37]. Hence, the algorithm takes into 

account the global minimization of the sum of the two 
latter components. 

This paper is structured as follows. The characterization 

of the motion is addressed more precisely in Section 
II. In Section III, classical motion estimation algorithms 

are reviewed in a video coding perspective. Simulation 
results are presented in order to compare the performances 
of these techniques. The locally adaptive multigrid block 

matching motion estimation is introduced in Section IV. 
The method is then analyzed and simulation results are 

presented. Finally, Section V draws the conclusions. 

II. CHARACTERIZATION OF THE MOTTON 

Before discussing in more details motion estimation 

techniques, the notion of motion should be clarified in the 

framework of image sequence processing. 
Formulations in terms of either instantaneous velocity or 

displacement are possible. Due to the discrete nature of 
image sequences along time, the instantaneous velocity v 
of a pixel and its displacement ri are related by a constant 

factor 6.t which corresponds to the temporal sampling 

interval. Consequently, in this case these two quantities 

are interchangeable and both formulation are equivalent. 

However, the last statement is no longer valid when the 
motion of a group of pixels is modeled by a set of 

motion parameters (parametric approaches, see Section 11-
A). In this case, instantaneous velocity and displacement 

formulations may lead to distinct models. Hereafter the 
formulation in terms of displacement is adopted, and the 
term motion vector should be understood accordingly. 

In a digital image sequence, the 40 spatiotemporal con­

tinuum is projected onto a 3D discrete sample grid. A 
distinction is made between two entities: the 2D motion 

field and the optical flow [91. The 20 motion field is defined 
by the projection of the 3D motion on the 20 image plane. 
The optical flow corresponds to the spatiotemporal variation 
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of intensity. In the ideal case. the optical flow corresponds 
to the 2D motion field. However, in practice this is not 
guaranteed. For instance, it may happen that a moving 
object gives rise to a constant brightness pattern, thus the 
optical flow is zero even though motion exists in the scene. 
Conversely, in a still scene the optical flow may be non 
zero due to illumination changes. 

In video coding, motion estimation techniques estimate 
the trajectory of pixels over successive images in order 
to express the current image intensity from previous in­
formation. Therefore they estimate the optical flow. In 
what follows, no distinction will made between these two 
notions, and the term motion should be understood as 
optical flow. 

A. Deterministic Versus Probabilistic and 

Nonparametric Versus Parametric 

The motion can either be identified in a deterministic 
framework or a probabilistic one [38]. The former approach 
is usually chosen and the motion is seen as a deterministic 
quantity which is unknown. The corresponding estimator is 
referred to as maximum likelihood (ML). By maximizing 
the probability of the observed sequence with respect to the 
unknown motion. it is possible to estimate the latter. All the 
techniques presented in this paper (i.e., gradient [22]-[25]. 

pel-recursive [6], [26], [27]) and block matching [3], [7]. 
[8]) rely on this deterministic approach and can thus be 
seen as arising from a maximum likelihood approach. 

The alternative to the deterministic view of motion is the 
probabilistic (Bayesian) one. The latter models the motion 
as a random variable. The ensemble of motion vectors 
forms a random field which is usually modeled by a Markov 
random field (MRF). Based on this assumption, it has been 
shown that the joint distribution function characterizing 
the random field is a Gibbs distribution. Estimators such 
as maximum a posteriori (MAP) and minimum expected 
cost (MEC) can thus be derived readily. Motion estimation 
techniques based on this probabilistic approach have been 
proposed in [39J, [40]. 

The estimation of the motion is underconstrained and 
results in an ill-posed problem. Therefore, all motion es­
timation techniques need an additional constraint. This 
constraint can be implicit or explicit. A distinction can 
be made between nonparametric and parametric motion 
estimation techniques which rely on nonparametric and 
parametric motion models respectively [41]. Nonparametric 
techniques rely on a dense motion field. In these techniques, 
an explicit constraint (e.g., smoothness or local uniformity) 
is introduced in order to regularize the ill-posed problem. 
In contrast, parametric techniques model the motion of 
a region whose pixels have a coherent motion with a 
single set of parameters, referred to as motion parameters. 
Hence, these motion parameters are estimated instead of 
the motion field itself. Consequently, such a motion model 
describes in a compact way the motion throughout an image 
sequence. The computation of the motion field is implicitly 
constrained by the motion model itself and an explicit 
constraint therefore becomes useless. 

860 

B. Motion Models and Support for the Motion Estimation 

As far as parametric techniques are concerned, various 
motion models have been derived and studied. The assump­
tion of a planar surface under a perspective projection leads 
to an eight-parameter model [42]. Under the further hypoth­
esis of distant shallow plane, the perspective projection is 
closely approximated by the orthographic projection [42]. 
The latter projection leads to the following affine motion 

model, which involves six parameters and can be expressed 
as 

+ 
+ 

a2'x + 
a5'X + 

a3' Y ) 
a6' Y 

( 1) 

where (x, y)T are the spatial coordinates. Using more 
meaningful parameters, it can also be written as 

where dx and dy are the two components of a translation 
vector, 8x and Sy are the scaling ratios in the x and y 
directions, and ()x and ()y are the rotation angles around the 

x and y axis. This model is capable of describing rotation, 
zoom, and even some nonrigid body motions such as sheer 
motion. 

The model defined by (2) can be simplified to four 
parameters by restricting Sx = 8y = sand ()x = ()y = () 

(X ) (8' cos () 

Y 1---7 8 '  sin () 
-8' sin () ) (x ) + (dx ) . 

(3) s·cos() y dy 
Finally, the simpler model is the translational motion 

model which defines the motion of an entity by a translation 
vector 

(4) 

This model is motivated by the fact that a complex motion 
can be approximated, under certain hypotheses, by a sum 
of infinitesimal translations. However, this model has some 
limits and cannot cope with complex scenes. 

Fig. I illustrates some examples of motion field which 
can be represented with the two, four, and six parameters 
models above. Although motion models involving more 
than six parameters have also been considered and studied, 
they are more commonly used in image analysis and vision 
applications. 

In parametric motion estimation techniques, the motion 
model and the support for the estimation are obviously 
closely related. A complex model results in a better de­
scription of the motion in a sequence, and thus allows 
representing efficiently the motion of a larger region of the 
image. Conversely. a simple model is sufficient to represent 
the motion of a small region of the image. 

In coding applications the motion parameters usually 
have to be sent to the decoder as overhead. Therefore, 
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an optimal tradeoff has to be found on the motion model 
complexity and the support for the estimation in order to 
optimally balance the accuracy to describe the motion in 
the sequence and the amount of motion parameters to be 
transmitted. Finally, a complex model leads to a greater 
difficulty in parameter estimation and a higher computa­
tional complexity. In particular, the process becomes more 
sensitive to noise. 

reason, block matching motion estimation techniques [3], 
[7], [8] relying on the simple translational motion model 
are the most commonly used. These techniques can be 
considered as a trivial case of parametric techniques. As 
this paper emphasizes first generation coding techniques, 
gradient, pel-recursive and block matching techniques will 
be described in more details in Section III. 

In [43] a block-based motion estimation with a hierarchy 
of models is introduced. The algorithm selects for each 
block a model depending on the scene content. Of course, 
the difficulty of this approach is to select the optimal model 
and to estimate the corresponding parameters. 

In most of the recent coding schemes, pels or small blocks 
of pels are coded separately (first generation coding). For 
instance, the current standards MPEG- I [31], [32], MPEG-2 
[33], [34], and H.261 [35] are based on transform coding in 
which the image is partitioned into small blocks which are 
then coded separately. In this context, motion estimation 
techniques that work on a pel-by-pel or block-by-block 
basis are the most suitable. The former case corresponds 
to nonparametric approaches (e.g., optical flow gradient 
techniques [22]-[25] or pel-recutsive techniques [6], [26], 
[27]). In the latter case, as the region described by one set of 
parameters is small, a simple model is sufficient. For this 

In an object-based coding scheme, such as those proposed 
in [44], [45], the scene is represented in terms of objects 
(second generation coding [4]). Therefore, in this case an 
object-based parametric motion estimation is more mean­
ingful. Although this subject has already been intensively 
studied in the field of image analysis, it is still new in 
the field of coding. However, the domain is promising and 
algorithms have been proposed in [46]-[51]. As the motion 
estimation is performed on large regions of the image a 
more complex motion model is required, thus the affine 
model is often chosen. 

III. REVIEW OF MOTION ESTIMATION TECHNIQUES 

A number of very different motion estimation algorithms 
have been proposed in the literature. Detailed reviews 
are given by Musmann [3], Nagel [16], Aggarwal and 
Nandhakumar [17], Singh [18], Sezan and Lagendijk [19], 
Barron et al. [20], and Tziritas and Labit [2 1] .  These algo-
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rithms have been developed for very different applications 
such as image sequence analysis, machine vision, robotics, 
image sequence restoration or image sequence coding. 

Even though [16]-[20] provide detailed reviews of mo­

tion estimation algorithms, they address the problem in 
an image sequence analysis perspective. As stated before, 
the purpose of motion estimation in the field of coding is 

significantly different. More specifically, the determination 
of the motion is not an intrinsic goal; indeed motion 
estimation techniques aim at minimizing the bandwidth 
corresponding both to the prediction error information and 
to the motion overhead. Therefore, in the remainder of this 
section some of the classical motion estimation algorithms 
are discussed and compared from an image sequence coding 
point of view. 

Motion estimation techniques can be divided into four 
main groups: 

• gradient techniques [22]-[25], 
• pel-recursive techniques [6], [26], [27], 
• block matching techniques [7], [8J, 
• frequency-domain techniques [28]-[30]. 

Gradient techniques have been developed for image se­

quence analysis applications. They solve the optical flow 
and results in a dense motion field. Both pel-recursive 
and block matching techniques have been developed in the 
framework of image sequence coding. Pel-recursive tech­
niques can be considered as a subset of gradient techniques. 
However as they constitute an important contribution in 
the field of coding, we consider them as a separate group. 
Block matching techniques are based on the minimization 
of a disparity measure. They are the most widely used in 
coding applications. Finally. frequency-domain techniques 
are based on the relationship between transformed coeffi­

cients (e.g., Fourier or Gabor transform) of shifted images. 
However. they lack a widespread use, especially in the field 

of image sequence coding, and therefore they will not be 
further discussed in this paper. 

In the following, the image intensity at pixel location 
l' = (x, y)T and at time t is denoted by 1(1', t), and 

l = (d"" dy) T is the displacement during the interval t.t. 
All the techniques presented hereafter rely on the hypothesis 
that a change in the image intensity I(f, t) is due only to 

the displacement (f It is expressed by 

I(T, t) = I(r - d� t - t.t) (5) 

and the displaced frame difference (DFD) is defined as 

DFD(r, t, 1) = I(f, t) - I(f - d� t - �t). (6) 

A. Gradient Techniques 

Gradient techniques rely on the hypothesis that the image 
luminance is invariant along motion trajectories. The Taylor 
series expansion of the right hand side in (5) gives 

1(- d- A) 1(-) d- "1(- ) aI(r,t) 
T - , t - i...>t = T, t - . v r, t - �t---

at 
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+ higher order terms (7) 

where � = [ca/ax), ca/ay)jT is the gradient operator. 
Neglecting the higher order terms (first order approxima­
tion), assuming the limit t.t -> 0, and defining the motion 

vector 1) = (vx, vy) T = dl t.t we obtain 

V. �I(f, t) + 8I�, t) 
= O. (8) 

The latter equation is known as the spatio-temporal con­

straint equation or the optical flow constraint equation [22]. 
As the image intensity change at a point due to motion 

gives only one constraint (8), while the motion vector at the 
same point has two components, the motion field (actually 
the optical flow) cannot be computed without an additional 
constraint. In fact, only the projection of v on � I. in other 
words the component of v parallel to the intensity gradient, 

can be determined from (8). This problem is known as the 

aperture problem. Therefore an additional constraint must 

be introduced to regularize the ill-posed problem and to 
solve the optical flow. 

In [22], Hom-Schunck introduce a smoothness con­
straint, that is to minimize the square of the optical flow 

gradient magnitude 

Consequently, the optical flow is obtained by minimizing 

the following error term 

J J { (v. � 1 +  �� r + a2 [ ( �� r + (�: r 
+ (�; r + (�� r]) dx dy (10) 

where a2 is a weighting factor. This minimization prob­
lem is solved by the variational calculus and an iterative 

Gauss-Seidel procedure. 

Many variations of the above algorithm have been pro­
posed. Instead of the smoothness constraint, an assumption 

of local uniformity is made by Lucas and Kanade in [23]. 
In [24], Nagel develops the Taylor series of (7) up to the 
second-order terms. In [251, Nagel introduces an oriented 

smoothness constraint, which takes occluding edges into 

consideration, instead of the isotropic smoothness constraint 
used in (10). More detailed discussions on the many varia­

tions of the above Hom-Schunck algorithms can be found 
in [16]. [17], [20]. The above approach deals with images at 
a single resolution scale, hierarchical schemes based on the 

spatiotemporal constraint equation have been developed in 

[52], [53]. 
All these techniques result in a dense motion field (Le., 

a motion vector per pixel). This is qualitatively interesting 

for motion analysis applications. However, from an image 
sequence coding point of view, these techniques suffer 

from two serious drawbacks. First the smoothness con-
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straint leads to an increased energy of the prediction error, 
especially on moving objects boundanes. Second, the dense 
motion field requires much overhead information. In [54], 

this problem is tackled through the use of a motion vector 
field coded at different resolutions. At each level, only 
the motion vectors from which the motion compensation 
benefits most are coded. 

B. Pel-Recursive Techniques 

Pel-recursive techniques recursively minimize the predic­
tion error or DFD in (6). The recursion is usually carried 
out on a pel-by-pel basis, leading to a dense motion vector 
field. These methods are among the first motion estimation 
techniques developed for image sequence coding applica­
tions and have been designed with a constraint of a very 
low hardware complexity. Pel-recursive techniques can be 
considered as a subset of the gradient techniques in which 
the spatiotemporal constraint is minimized recursively. 

The first pel-recursive algorithm was proposed by Ne­
travali�Robbins in [6]. In this algorithm, the DFD2 is 
iteratively minimized by the steepest descent technique, 

with a constant gain E > 0, and k denotes the iteration 
index. From the definition of the DFD, (6), we have 

2 � � 

"VlDFD (T, t, d) =2DFD(r', t, d) 

·"VrICr-d�t-�t). (12) 

Substituting (12) in (11), the displacement vector update 
becomes 

d1k+l) =d1k) - EDFD(r', t, d1k») 

. "V rI(r' - d1k), t - �t). (13) 

The performance of the pel-recursive techniques depends 
strongly on the way to compute the update term in (13). 

In the algorithm introduced in r 61. the iteration from k to 
k+ 1 is carried out either on one pel location, or from one 
pel to its consecutive neighbor. To smooth out the effect 
of noise, the algorithm can be extended by calculating and 
averaging the update term on several pels. 

Improved algorithms based on the samc principle have 
been proposed for instance by Cafforio and Rocca [26], 

and Walker and Rao [27]. Compared to [6], the gain E 
is substituted by variables in order to achieve a better 
adaptation to the local image statistic and consequently a 
better convergence. A more detailed description of various 
pel-recursive algorithms, as well as some comparative 
results, is given in [3]. 

Special care has been taken to enhance the tracking 
capability and the stability of the pel-recursive algorithms. 
In [55] a multiple frames model-based approach is pre­
sented, whereas in [56J a multiple mask regularization tech­
nique is proposed. The algorithm introduced in [57] shares 

characteristics of both pel-recursive and block matching 
approaches by combining motion information sent from the 
encoder and motion information recursively estimated at 
the decoder. 

Provided that the recursion has a sufficiently rapid con­
vergence (i.e., it can handle motion discontinuities), such 
pel-recursive algorithms may overcome the problem of 
multiple moving objects. Furthermore, when the update 
of the displacement vector is based only on previously 
transmitted data (causality), the decoder is able to estimate 
the same motion field than the encoder. In this case, no 
overhead motion information is required, which is of course 
a further advantage of these methods. 

However, the causality constrains these algorithms and 
reduces their prediction capability relative to noncausal 
methods. Furthermore, the pel-recursive motion estimation 
technique (with recursion on pels) is not compatible with 
transform coding of the DFD, as in this case the decoder 
is unable to reconstruct the motion vectors. Moreover, the 
algorithm implies an increased computational complexity 
at the decoder, as the latter should also estimate the motion 
field. Pel-recursive algorithms suffer from two further draw­
backs. First, as the error function to be minimized contains 
generally many local minima, the iterative procedure may 
converge to a local minimum rather than to the global 
one. In particular, these algorithms are very sensitive to 
noise. Second, large displacements and discontinuities in 
the motion field cannot be efficiently handled. 

C. Block Matching Techniques 

Block matching algorithms are based on the matching of 
blocks between two images, the aim being to minimize a 
disparity measure [3], [7], [8]. Specifically developed for 
image sequence coding, they are widely used in this field. 

In block matching motion estimation, the image is par­
titioned into blocks and the same displacement vector is 
assigned to all pixels within a block. The motion model 
usually assumes that an image is composed of rigid objects 
in translational motion. Although this model is clearly 
restrictive, it is justified by the fact that complex motion 
can be decomposed as a sum of translational components. 
Consider the problem of predictive coding, the aim of 
motion estimation is to find the displacement vector iwhich 
allows predicting I(r', t) from I(r, t - �t) in (5). For each 
block, the displacement vector is evaluated by matching the 
information content of a measurement window W with that 
of a corresponding measurement window within a search 
area 5, placed in the previous frame, and by searching the 
spatial location minimizing the matching criterion, 

i = arg !llin L III(T, t) - ICr - d, t - �t)11 (14) 
dES rEW 

where the most widely used distance measures are the 
quadratic norm Ilxll = x2 and the absolute value Ilxll = Ixl. 

Finding an absolute minimum for the matching criterion 
can only be guaranteed by performing an exhaustive search 
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of a series of discrete candidate displacements within a 

maximum displacement range, this technique is called 
full-search block matching. Despite the heavy computa­

tions it requires, it is widely used in video coding, due 

to its simplicity and ease of hardware implementation. 

In order to decrease the computational load of the full­

search algorithm, fast search techniques have been proposed 

[7], [8], [58], [59]. These fast search techniques afford 

significantly reduced computation times compared to the 
full-search algorithm. However, convergence toward the 

global minimum is guaranteed only when the matching 

criterion is a monotonic function of 1. 
Block matching algorithms have been designed initially 

to estimate displacements with a precision of one pixel, 
however a sub-pixel accuracy can be obtained. For this pur­

pose, the image intensity has to be interpolated at fractional 

pixel locations. In practice, this stage is implemented in 

post-processing where the one pixel accuracy displacement 

vectors are refined to a fractional pixel precision. Notably, 

this post-processing significantly increases the computa­

tional complexity. 

The above described algorithms deal with images at a 

single resolution scale. In order to reduce computational 

complexity and to take into account the multi-scale charac­
teristic of the motion in a scene, hierarchical [60], [61] and 

multigrid [36] algorithms have been proposed. 

In the standard block matching technique, the motion is 

restricted to translation. However, block matching based 

motion estimation algorithms that relax this constraint have 

been investigated. In [62] an affine model for image match­

ing is proposed, where each block undergoes an affine 
transform instead of a translation in the standard tech­

nique. Similarly, a generalized block matching algorithm 

is proposed in [63] which includes complex motions such 
as rotation or nonlinear deformation. Of course, a more 

complex motion model leads to a more accurate motion 
estimation. However, it also introduces the two following 

drawbacks. First, the computational complexity is greatly 

increased and an accurate estimation of the motion param­

eters becomes difficult. Second, for coding applications, a 

more complex motion model means a higher amount of 

overhead information. If this additional overhead is not 

counterbalanced by the gain due to more accurate motion 

vectors, then the more complex models may in fact lead to 

a globally lower performance. 
To conclude, as the block matching methods directly 

minimize the DFD, they are well suited for image sequence 

coding. Furthermore, due to the block-based nature of 
these techniques, they require only little overhead motion 

information. For these reasons, block matching motion 
estimation techniques are the most widely used in image 

sequence coding. Recent standards such as MPEG-l [31], 

[32], MPEG-2 [33], [34], and H.261 [35] are based on them, 

even though the algorithm to estimate the motion vectors 

is not specified explicitly. 
However, despite their successful applications, block 

matching motion estimation techniques suffer from several 
drawbacks. Among the major ones are: unreliable motion 

864 

fields in the sense of the true motion in the scene, block 
artifacts, and poor motion compensated prediction along 
moving edges. 

D. Comparison Between Gradient, Pel-Recursive and 

Block Matching Motion Estimation Techniques 

Experiments were carried out to assess the perfor­

mance of the above motion estimation techniques in 

an image sequence coding perspective. Three of the 

best-known algorithms where chosen for comparison, 

namely the Horn-Schunck gradient technique [22], the 

Netravali-Robbins pel-recursive technique [6], and the 
full-search block matching technique. As different results 

would be obtained when using different algorithms, the 
conclusions inferred from the following experiments should 

be carefully considered. However, these experiments give 

a faithful insight about these three different approaches to 

motion estimation and most of the following observations 

are generally representative of them. 
Simulations were performed on the luminance component 

of the three sequences "Mobile Calendar," "Table Tennis" 

and "Flower Garden" in CIF format (288 x 352 pixels, 

8 b/pixel, 25 Hz). These sequences were chosen for their 
difficult motion and their different characteristics. In par­
ticular, "Mobile Calendar" and "Flower Garden" include 

panning and highly detailed moving areas, while "Table 

Tennis" contains large displacements and zooming. 

To assess the performances of the different motion esti­

mation techniques, the following comparisons were made. 
First, the subjective quality of the estimated motion field 

was evaluated, showing the capability of the algorithm to 
estimate the true motion in the scene. In particular, smooth 

motion fields are desired in coding in order to prevent 
artificial discontinuities in the DFD and to reduce the 

overhead to transmit the motion information. Second, the 

DFD error energy was measured, giving insight about the 

quality of the prediction which is a key feature in coding. 
Based on simulation results, the following implemen­

tation choices were made. As far as the Horn-Schunck 

algorithm is concerned, the parameter a2 in (10) was set to 

a2= 100, and the results were considered after 100 itera­

tions of the Gauss-Seidel procedure. Furthermore, in order 

to improve the approximation of the spatial gradient by 

first-order differences, a Gaussian spatial low-pass prefilter 
was applied to smooth out the effect of noise as suggested 

in [201. 

Concerning the Netravali-Robbins algorithm, the param­

eter E in (13) was set to E = 111024, and the update term, 

i.e., the second term on the right hand side of (13) was 
averaged on an area of 5 x 5 pels and clipped to a maximum 

magnitude of 1/16 pel/frame. The algorithm performed one 

iteration per pel. These choices correspond to the original 

algorithm proposed in [6]. However, it should be underlined 

that the performance of the pel-recursive algorithm depends 
heavily on the way the update term is computed. 

Finally, the full-search block matching was applied on a 

block size of 16 x 16 pixels with a maximum displacement 

of ±15 pixels. In [36J, it is shown that half-pixel accuracy 
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Fig. 2. Motion field: (a) frame of "Mobile Calendar" and motion vectors obtained when using (b) 
Netravali-Robbins. (e) Horn-Sehunek, and (d) full-search block matching. 

motion vectors leads to a very significant improvement 

when compared to one pixel accuracy. whereas a higher 

precision results in negligible changes. This result is in 

agreement with the results obtained in [64], [65]. Therefore, 
an half-pixel accuracy was chosen in our simulations. 

Figs. 2-4 depict motion field needle diagrams obtained 

with the three different motion estimation algorithms. The 
motion vectors (subsampled for pel-recursive and gradient 

techniques) estimated between the frames I and 2 are shown 
for the sequences "Mobile Calendar" and "Flower Garden," 

and between frames 8 and 9, Le., corresponding to the 
zoom, for the sequence "Table Tennis." The limitations of 
the pel-recursive technique proposed in [6] appear clearly. 

The method estimates moderate motion as in "Mobile 

Calendar" or on the field of flowers in "Flower Garden," 

but is unable to cope with large displacements as in "Table 

Tennis" or on the tree in "Flower Garden." This is not 
surprising as this approach to pel-recursion was developed 

for tame video-conferencing sequences. Besides, in the 

regions where the DFD remains small the update term 

is negligible [see (13)], and therefore the displacement 
estimate does not change. As a consequence, in the uniform 
areas, motion vector estimates propagate along lines due 

to the recursion. It sometimes results in wrong motion 

vectors, however it does not have an impact on the coding 

performance, as the DFD is small anyway in these areas. 

With regards to the gradient and block matching techniques, 

both lead globally to motion fields close to the true motion 

in the scene. The motion fields estimated by the gradient 
technique tend to be very smooth due to the smoothness 
constraint. In contrast, the ones obtained by the block 

matching technique exhibit a few wrong motion vectors 

in the sense of the motion in the scene (but optimal in 

minimizing the DFD energy). A significant difference be­
tween the two techniques occurs for the portion of zooming 

in the sequence "Table Tennis." Although a motion model 
constraint to blockwise translation is often considered to 

be a major drawback in the presence of zoom, the block 

matching technique is able to estimate closely the true 

zooming motion. In contrast, the gradient technique without 

constraint on the motion model is surprisingly unable 
to do so. It can be concluded that, despite its simple 

motion model, the block matching motion estimation results 

globally in motion fields more representative of the true 
motion in the scene. 

Fig. 5 shows the DFD energy corresponding to the above 

results. It appears clearly that the implemented pel-recursive 
technique is significantly less efficient than the two other 
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Fig. 3. Motion field: (al frame of "Table Tennis" and motion vectors obtained when using (b) 
Netravali-Robbins, (c) Hom-Schunck, and (d) full-search block matching. 

methods. It is mainly due to the difficulty of the algorithm 
to cope with large displacements and discontinuities in the 
motion field. As it provides a higher density of motion 
vectors (one vector per pixel instead of one per block), the 
gradient technique would be expected to outperform the 
block matching technique. However, it is observed that both 
perform similarly for the sequence "Mobile Calendar" and 
"Flower Garden," whereas the block matching technique 
is superior for the sequence ''Table Tennis." In particular 
it is very interesting to observe that the block matching 
technique outperforms the gradient one in the portion of the 
sequence which contains a zoom, even though the method 
limits the motion to simple blockwise constant translations. 
The relatively poor performances of the gradient technique 
are explained by three limitations: the undesirable effect 
of the smoothness constraint, the error in the gradient 
estimation, and the limitation due to the modeling of the 
luminance by a Taylor expansion. 

From the above simulation results, the following conclu­
sions can be drawn. First, in the Hom-Schunck gradient 
technique, obtaining a dense motion field does not lead to 
an improved prediction capability, whereas it does induce 
a high amount of overhead information. Therefore, the 
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method is more interesting from an analysis rather than 
coding point of view. Second, the Netravali-Robbins pel­
recursive technique, even though it provides a dense motion 
field, performs poorly in estimating the motion. The savings 
in overhead information is not sufficient to compensate for 
this poor prediction. Therefore, despite its drawbacks, the 
block matching technique, which directly minimizes the 
DFD energy and requires only one motion vector per block, 
appears to be the most suitable for coding purposes. 

The above considerations illustrate the specificity of 
motion estimation for coding applications. Indeed, the aim 
is to minimize globally the bit rate corresponding both to 
the prediction error and to the motion parameters, rather 
than to estimate the true motion. Hence, an optimal tradeoff 
on the motion estimation accuracy has to be found in 
order to optimally balance the bandwidth corresponding 
to these two components. The three algorithms studied 
in this section correspond to three very different alloca­
tions of the bandwidth between the DFD and the motion 
parameters. More precisely, the Hom-Schunck technique 
leads to an accurate motion estimation thanks to a dense 
motion field, but it requires a very high amount of overhead 
information. Conversely, the Netravali-Robbins technique 
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Fig. 4. Motion field: (a) frame of "Flower Garden" and motion vectors obtained when using (b) 
Netravali-Robbins, (e) Horn-Sehunek, and (d) full-search block matching. 

does not require the transmission of the motion vectors, 
but it does entail a poor motion estimation. In between 
these two extremes, the block matching technique relies 
on a simple motion model which leads simultaneously to a 
precise motion estimation and a low overhead. Therefore, it 
achieves a good allocation of the bandwidth between DFD 
and motion parameters, and in this respect outperfonns 
the gradient and pel-recursive techniques. Furthennore, in 
the current standards MPEG-l [3 1 ], [32], MPEG-2 [33], 
[34], and H.261 [35] which are based on a DCT transfonn 
coding, block matching motion estimation techniques are 
clearly the most appropriate. 

Although it is clear that different results would be ob­
tained when using different gradient, pel-recursive and 
block matching algorithms, the above comments are gen­
erally true of these three groups of motion estimation 
techniques. 

IV. LOCALLY ADAPTIVE MULTIGRID BLOCK 
MATCHING MOTION ESTIMATION 

For the reasons discussed previously, block matching 
motion estimation techniques are the most widely used 
in video coding applications. However, they have several 

serious drawbacks: unreliable motion fields in the sense 
of the true motion in the scene, block artifacts, and poor 
motion compensated prediction along moving edges. 
Several techniques have been proposed to overcome these 
drawbacks, in order to improve perfonnance. 

In order to obtain more reliable motion fields, hierarchical 
block matching algorithms have been proposed [60], [61] .  
They are based on a multiresolution representation: A 
Laplacian pyramid in [60] and a low-pass filter by local 
average in [6 1 ] .  A coarse but robust estimation of the 
motion field is obtained at the lowest resolution level, and 
is iteratively refined on the high resolution levels. 

In order to overcome the problem of block artifacts in 
the motion compensated frame, due to the hypothesis that 
each pixel within a block has the same motion, different 
techniques have been investigated. A simple method is 
to use overlapped windows [66]-[68]. A very different 
technique, based on control grid interpolation, has been 
proposed in [69]. First, spatial displacements are specified 
for a small number of points in an image, named control 
points and nonnally chosen as vertices of a rectangular grid. 
Next, the displacement of the other points is detennined by 
interpolating between the control points. Block matching 
algorithms can be considered as a trivial special case of 
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Fig. 5, DFD energy: Comparison between Netravali-Robbins, Horn-Schunck, and full,search 
block matching, (a) "Mobile Calendar," (b) ''Table Tennis," and (e) "Rower Garden." 

control grid interpolation in which interpolation is per­

formed by nearest-neighbor, block artifacts being a result 
of the latter operation. In [70], a very similar algorithm is 
proposed, The grid is composed of triangular patches and 
an affine transform is used to represent the transformation 
of these patches. 

A more promising approach to solve the problem of block 
artifacts and to provide more accurate prediction along 
moving edges is to segment the motion field. A locally 
variable block size block matching algorithm has been 
introduced [71],  in which a binary-tree segmentation of the 
motion field is carried out. In [72], blocks corresponding to 

moving edges are segmented, taking into account the infor­

mation of the previous frame. Similarly, another approach 
which segments the block-based motion field by means of 

vector quantization (VQ) has been proposed [73], [74] . In 
this method, blocks which contain several objects moving 
in different directions are segmented. 

In this section, a locally adaptive multigrid block match­

ing motion estimation technique is introduced [36], [75],  
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It is based on the multigrid theory developed in the field 

of mathematics [76], The observation that natural scenes 

frequently contain motion at different scales motivates 
the introduction of multi-level algorithms, Large range 
displacements are robustly estimated on large-scale struc­

tures and short range displacements are accurately esti­
mated on small-scale structures. Besides, finer structures 

are important in detailed areas, whereas coarser struc­
tures are sufficient in uniform regions. Locally adaptive 
multigrid block matching takes into consideration these 
remarks. It combines a multigrid structure and a quad­
tree decomposition, Due to the multigrid structure, smooth, 
robust and accurate motion fields are obtained, Furthermore, 
the computational complexity is greatly reduced, Due to 
the adaptive structure, more precise motion vectors are 
estimated on moving edges and the side information is 
decreased in uniform areas. 

Another problem specific to motion estimation for video 
coding is determining the appropriate precision of the 
motion estimate, Clearly, more precise motion vectors lead 
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Fig. 6. Example of a three-grid adaptive multigrid structure. 

to an improved prediction, but require a higher coding cost, 
and conversely a less accurate motion estimation needs a 
lower amount of side information but provides a poorer 
prediction. Very little research effort has been devoted 
to this topic in the literature. In this section, a criterion, 
the so-called entropy criterion, is proposed in order to 
optimally balance the amount of information corresponding 
to the prediction error and the representation of the motion 
[37] . The optimal tradeoff is reached by evaluating the 
transmission cost relative to both the prediction error and 
the motion information, and by minimizing the sum. Hence, 
a global minimization of the total bit rate is achieved. This 
criterion is general and can be applied to optimize most of 
motion estimation algorithms. In locally adaptive multi grid 
block matching motion estimation, it is applied to control 
the quad-tree segmentation. 

In the remainder of this section, locally adaptive multigrid 
block matChing, including the entropy criterion, is described 
in more detail. 

A. Locally Adaptive Multigrid Block Matching 

A new multi-level motion estimation technique, locally 
adaptive multigrid block matching, is discussed now. The 
formalism of the multigrid theory [76] as well as the local 
mesh refinement [77], provides a mathematical description 
of the algorithm. The multilevel structure is built on a set of 
grids with different sizes (multigrid structure). Therefore it 
is not a multiresolution approach in the classical sense. Fur­
thermore, the multigrid structure is made locally adaptive 
to take into account the spatial content of the scene. 

Fig. 6 illustrates the locally adaptive multigrid block 
matching motion estimation. The segmentation is carried 
out by a quad-tree decomposition. The algorithm starts by 
estimating the motion field on the coarsest level. Then, the 
grid is split only in the regions where the current solu­
tion accuracy is judged unsatisfactory. The corresponding 
motion vectors are down-projected to the finer grid and 
are refined. This procedure is iterated until a satisfactory 
accurate solution is obtained or a minimum block size is 
reached. The algorithm is thus composed of three majors 
components which are the motion estimation at each level, 
the segmentation decision rule and the down-projection 
operator to map the motion field between two grids. 

Obviously, the segmentation information, namely the 
quad-tree, should be sent to the decoder as side information. 
Nevertheless, as one bit per node of the tree is sufficient 
to completely define the segmentation, it represents a very 
low amount of information. 

Due to the multigrid structure, large displacements are 
estimated robustly on the coarse grids with large matching 
windows, and small displacements are found accurately on 
the fine grids with small matching windows. Therefore, the 
method leads to motion fields which are simultaneously 
robust in the sense of the true motion in the scene and 
accurate in the sense of minimizing the prediction error. 
Furthermore, the local adaptation results in small grid sizes 
in areas containing detail and large grid sizes in the uniform 
ones. Thus the block artifacts are greatly reduced and very 
accurate predictions are obtained in important areas such 
as moving edges, while the amount of side information is 
kept low. 

The proposed algorithm shares some similarities with the 
hierarchical block matching techniques proposed in [60], 
[61] and the variable size block matching algorithm in 
[7 1 ] .  However, it includes new features which distinguish 
it. First, the algorithm relies on a multigrid structure and 
not on a multiresolution representation. Second, it combines 
advantageously the benefits of the multigrid approach with 
the advantages of the locally varying block size. Finally, 
it includes a criterion to control the segmentation and to 
achieve an optimal bandwidth allocation between the DFD 
information on the one hand and the motion parameters on 
the other hand. 

The main components of the algorithm, namely the 
motion estimation at each level, the segmentation decision 
rule and the down-projection operator, play a key role on 
the performances of the algorithm. They are described in 
more detail below. 

B. Motion Estimation at Each Level 
As shown in Section III, block matching techniques are 

well-suited for coding applications. Consequently, block 
matching motion estimation is performed at each level. 
In order to reduce the computational complexity of the 
algorithm, a fast search technique, the modified n-step 
search, is applied. Fig. 7 illustrates the modified three­
step search. At the first step, the nine locations defined by 
the set (0, ±2n-1 )  are evaluated. The best estimate is the 
initial point for the next step, and at the ith step, the eight 
locations defined by the set (0, ±2n-i) around the initial 
point are evaluated. Consequently, the resulting maximum 
displacement of the n-step search is 2n-1 . 

As the coarse grids provide robust estimates and the 
fine grids accurate ones, large (respectively small) maxi­
mum displacements are allowed on the coarse (respectively 
fine) grids. The fast search technique combined with the 
multigrid structure allow estimating large displacements 
with a very low computational complexity, when compared 
to a monoresolution full-search block matching algorithm. 
Indeed, in [36] it is shown that for a CCIR-601 format 
the number of match positions to be evaluated is decreased 
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Fig. 7. Modified three-step search: example for a displacement 
dx = -3 and dy = 4, and 25 search positions (the numbers 
i = 1, . . . , 3 in circle indicate the search points at step i, the 
shaded ones indicate the displacement after step i). 

dy 

by approximately two orders of magnitude. Although this 
result is extremely important for software simulations, it 
cannot be deduced straightforwardly that the hardware 
implementation will be more efficient. However, a study of 
an earlier version of the proposed multi grid algorithm has 
been carried out in [78], [79] and has shown the feasibility 
of an efficient hardware implementation. 

In the matching criterion, both the mean absolute error 

(MAE) and the mean square error (MSE) measures can 
be used. In [36], simulation results show that the MAE 

and the MSE matching criteria perform similarly, motivat­
ing the choice of the former due to its easier hardware 
implementation. 

The above fast search technique leads to motion vectors 
with one pixel accuracy. It has been shown that sub-pixel 
accuracy leads to higher performances [36]. In this case, 
a post-processing which refines the one pixel accuracy 
motion vectors to a sub-pixel precision is performed af­
ter the locally adaptive multigrid block matching motion 
estimation. This operation requires the image intensity 
to be interpolated at fractional pixel locations. In the 
proposed algorithm, this interpolation is performed by 
bilinear interpolation. 

C. Segmentation Decision Rule 

The above quad-tree decomposition requires evaluating 
the accuracy of the current motion vectors. More precisely, 
it requires a rule to decide whether to split a block. The 
segmentation decision rule influences greatly the overall 
performances of the algorithm. Depending on this rule, the 
algorithm can lead either to more accurate motion vectors 
which require a higher amount of side information (many 
blocks are split) or to poorer motion vectors which need 
a reduced amount of overhead information (few blocks are 
split). Even though it is very easy to gain on one of the two 
terms, prediction error or side information, the challenge is 
to achieve an overall gain. 
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Fig. 8. Down projection: Comparison for the central block of 
duplication, bilinear interpolation, and best initial condition in a 
neighborhood. 

A simple criterion to decide whether to split a block and 

applied in [7 1 ] ,  [75], [80] is the following: 

• If the MAE (or another error measure) of the motion 
compensated block is above a preset threshold T, the 
block is split. 

MAEnosplit > T => split. ( IS) 
However, the above criterion does not guarantee that the 

extra-cost to send more motion parameters is worth the gain 
of decreasing the DFD energy, Furthermore, it requires to 
determine an appropriate value of the threshold T. 

The entropy criterion aims at the control of the segmen­
tation in order to reach the optimal bit allocation between 
motion parameters and DFD information [36], [37]. This 
criterion compares the extra-cost to send additional motion 
parameters with the gain obtained on the DFD side to 

decide whether to split a block. Moreover, it overcomes 
the problem of setting a threshold. 

The entropy criterion demands an estimation of the trans­
mission cost for both the DFD and the motion components. 
As far as the DFD is concerned and assuming an entropy 
coding, its coding cost is given by its entropy. In order to 
estimate the latter, a source model is needed and ideally 
a high order statistical model should be used. In this case 

one can compute the total entropy (Le., high order entropy) 
which indicates the DFD coding cost. An important remark 
is that this last statement is always valid, even when a 
transform coding technique is applied to the DFD, as in 
MPEG-l [31] ,  [32], MPEG-2 [33], [34], and H.261 [35]. 
However, observations have shown that the correlation 
is very low in DFD [36], [8 1 ] , [82]. Consequently, the 
DFD can be represented by a memory less source model 
and the Oth order entropy provides a good approximation 
of the total entropy. Furthermore, by the very nature of 

the prediction process, the DFD exhibits a characteristic 
distribution which allows its modeling as a Laplacian 

probability density function (PDF) [5], [36]. Hence an 
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(a) 

Fig. 9. ''Table tennis." (a) a frame and (b) the corresponding final grid. 

analytical expression to estimate the entropy of the DFD, 

namely its coding cost, can be derived [36], [37]. With 

regard to motion infonnation, its cost is most of the time 

straightforward and computationally easy to estimate. 

By minimizing the sum of the coding costs corresponding 

to the two components, DFD and motion infonnation, an 

optimal tradeoff is  reached. This minimization defines the 

entropy criterion. For the locally adaptive multigrid block 

matching algorithm, it can be written as follows: 

• If the extra-cost to send additional motion parameters 

is worth the gain obtained on the DFD side, then the 

block is split: 

n · (HOFO nosplit - HOFO splid 

>4 · Hvsplit - Hv nosplit => split ( 1 6) 

where n is the number of pixels in the block, 

HOFDspiit and HOFD nosplit are their entropy 
with/without split respectively, and Hv sl'lit and 

Hv nosplit the entropy of the motion vectors 

with/without split, respectively. 

In the algorithm, the amount of infonnation to transmit 

the segmentation infonnation, i.e., the quad-tree, is negli­

gible. Therefore, the extra cost is only represented by an 

increased number of motion vectors. The factor 4 is due to 

the fact that, in case of splitting, four motion vectors are 

transmitted for the block (quad-tree segmentation) instead 

of one. 

When compared to the criterion based on a threshold 

(15), the entropy criterion ( 16) avoids the setting of a 

threshold and guarantees a minimization of the total bit 

rate. The entropy criterion is therefore clearly superior 

as shown in [36], [371 . As far as the visual quality is 
concerned, the following remarks can be done. First, the 

motion estimation improvement is likely to lead to a large 

gain on moving edges which correspond to regions difficult 

to predict accurately. Therefore, the criterion is accepting 
more precise motion parameters in these visually important 

regions. Second, the bit rate saving due to the criterion can 
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Fig. 10. ''Table tennis," zoom on the bal and player's arm: (a) 
original, (b) motion compensated prediction using full-search block 
matching. and (c) motion compensated prediction using the locally 
adaptive multi grid algorithm. 

be used to enhance the visual quality of the reconstructed 
sequence (e.g., by decreasing the quantization step size in 

the DFD coding). 

D. Down-Projection Operator 

An operator is required to map the motion field between 

two grids in the coarse-to-fine iterative refinement process. 
This operator should avoid the propagation into fine levels 

of block artifacts due to the use of large block sizes on 
the coarser levels. It should also prevent wrong motion 

vectors estimates, due to local minima of the matching 

criterion, from propagating throughout the multigrid levels. 

Finally, it should guarantee smooth and robust motion field. 

To fulfill these requirements, the down-projection operator 
should incorporate a spatial consistency of the motion field. 
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(a) (b) (c) 

Fig. 11. "Table Tennis," zoom on the ball: (a) original, (b) motion compensated prediction using 
full-search block matching, and (c) motion compensated prediction using the locally adaptive 
multi grid algorithm. 

According to the dyadic structure, four children sub­
blocks are generated on the fine grid from the corresponding 
parent block on the coarser grid. Each of these subblocks 
needs an initial motion vector, obtained by the down­
projection of the motion field estimated on the coarser 
grid. The simplest method duplicates four times the motion 
vector of the parent block. A bilinear interpolation is also 
possible. A more efficient operator consists in selecting 
for each child subblock the best initial condition among 
four parent blocks. The selection is based on the matching 
criterion, and the four parent blocks are the ones which are 
the closest to the considered child subblock. This down­
projection is referred to as the best initial condition in a 
neighborhood. 

Fig. 8 illustrates the down-projection and compares the 
duplication, the bilinear interpolation and the selection of 
the best initial condition in a neighborhood. In this example, 
the central block, which contains two different objects (indi­
cated with stripes) moving in different directions (indicated 
with arrows), is shown after down-projection. In this case, 
the down-projection by duplication assigns an irrelevant 
estimate to the upper-right subblock. The bilinear inter­
polation leads to more effective estimates; nevertheless it 
does not fully overcome the above drawback. By exploiting 
the spatial consistency of the motion field, the method 
selecting the best initial condition in a neighborhood is able 
to assign to the upper-right subblock a motion vector issued 
from a neighboring block. Therefore, it fully overcomes 
the above problem. The example presented in Fig. 8 shows 
clearly the advantage of the down-projection by selecting 
the best initial condition in a neighborhood compared to the 
duplication and the bilinear interpolation. This observation 
has been confirmed by simulation results [36]. The down­
projection by the best initial condition in the neighborhood 
fulfills the above desired requirements and is adopted in 
the algorithm. 

E. Simulation Results 

Simulation results are presented in this section to as­
sess the performances of the proposed locally adaptive 
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Table 1 The Locally Adaptive MuItigrid Algorithm 

J:rid block size n-s�search max. displ. 

0 4 x 4  2-step ±3 
1 8 x 8 2-step ±3 
2 16 x 16 3-step ±7 
3 32 x 32 4-sl"1'. ± 1 5  

multigrid block matching motion estimation. The reference 
is the classical full-search block matching with the same 
parameters as in Section III. 

Table I summarizes the choices made concerning the lo­
cally adaptive multigrid algorithm. The multigrid structure 
consisted of four levels, the smaller block size being 4 x 4 
pixels. With these parameters, the maximum displacement 
was ± 28 pixels. The resulting motion vectors were refined 
to half-pixel accuracy. 

Fig. 9 depicts an example of the final segmentation 
obtained on the sequence "Table Tennis" while using the 
locally adaptive multigrid algorithm. The algorithm clearly 
generates large blocks in uniform areas and small blocks 
on the player' s  arm, the bat, and the ball. 

From the above result, an enhanced visual quality is 
expected while using the locally adaptive mUltigrid al­
gorithm. Figs. 10 and 1 1  show two original portions of 
the sequence "Table Tennis," as well as the motion com­
pensated predictions obtained when using the full-search 
and the locally adaptive multigrid block matching mo­
tion estimation techniques. Whereas Figs. l O(b) and 1 l(b) 
exhibit strong block artifacts (especially on the bat, the 
hand and the ball) in Figs. l O(c) and I I(c) these block 
artifacts have been removed and boundaries are smooth and 
sharp, providing a more accurate prediction of the original 
frame. Consequently a greatly higher visual quality of the 
reconstructed sequence is obtained. 

The performances within a coding scheme are now 
evaluated. This is very important to completely assess 
the performances of a motion estimation algorithm in the 
framework of coding. In particular, it allows taking into 
consideration the quality of the interframe coding as well 
as the amount of overhead information required to transmit 
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Fig. 12. Bit rate versus PSNR: comparison between Netravali-Robbins. Horn-Schunck, and 
full·search block matching, (a) "Mobile Calendar," (b) "Table Tennis," and (e) "Flower Garden." 

motion parameters. These results are expressed in terms of 

bit rate and peak signal-to-noise ratio (PSNR). However, 

it should be underlined that PSNR is a poor measure 

of the visual quality. Indeed, edges are perceptually very 

important [83]. Nevertheless, as they constitute only a small 

portion of the entire image, their importance is not reflected 

by PSNR. Even though it is a poor measure, the PSNR is 

widely used due to the lack of perceptually reliable visual 

quality measures. 
The coding scheme used for comparison purpose was 

based on an interframe differential pulse code modulation 

(DPCM). The first frame was intraframe coded by a wavelet 

technique as proposed in [84], the following ones were 

motion compensated predicted. The resulting DFD's were 
uniformly quantized and entropy coded by the adaptive 
arithmetic coder introduced in [85]. As far as the motion 

vectors are concerned, they have to be quantized, coded 

and transmitted to the decoder. With the block matching 

technique, the quantization of the motion vectors is intrinsic 

to the algorithm (in our case 112 pixel accuracy). The 

quantized motion vectors were then differentially coded 
using the same adaptive arithmetic coder [85]. 

Fig. 1 2  shows the coding results obtained for "Mobile 
Calendar," "Table Tennis" and ''Flower Garden," in terms 
of bit rate and PSNR. For the three sequences, the locally 

adaptive multigrid algorithm outperforms the full-search 
block matching. The saving in terms of bit rate is approxi­
mately 0.5 Mb/s ( 10% to 20%) for "Flower Garden," 0.25 
Mb/s (6% to 1 2%) for "Mobile Calendar," and up to 0.2 

Mb/s (up to 8%) for "Table Tennis." It corresponds to a gain 
in terms of PSNR ranging from 0.5 to 1 .5 dB. Moreover, 
despite the low gain in terms of PSNR. the visual quality 
of the reconstructed sequence is greatly enhanced by the 
locally adaptive multigrid algorithm. In particular moving 
edges are much sharper. Consequently, the efficiency of the 
proposed motion estimation algorithm is clearly shown. 

V. CONCLUSIONS 

This paper addressed the problem of motion estima­
tion for image sequence coding applications and more 
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precisely for first generation coding techniques such as 

those commonly adopted in digital TV applications. In this 

framework, the aims of motion estimation are to provide 

good temporal prediction while requiring little overhead 

information. Therefore, the determination of the motion 

is not an intrinsic goal. Motion estimation aims indeed 

at minimizing the amount of information corresponding to 

both the prediction error and the motion parameters. 

After clarifying the notion of motion, classical motion 

estimation techniques have been reviewed in a perspective 

of coding applications. Despite a simple motion model, 

block matching techniques have been shown to be the most 

appropriate in the framework of first generation coding. 

Finally, a locally adaptive multigrid block matching 

motion estimation has been introduced. It overcomes the 

drawbacks of classical block matching techniques, namely 

unreliable motion fields in the sense of the true motion, 

block artifacts and poor prediction along moving edges. 

Due to the multigrid structure, robust and accurate motion 

fields are obtained, whereas the computational complexity 

is greatly reduced. By adapting to the scene content, the 

method provides more accurate prediction along moving 

edges and a decreased amount of overhead information 

in uniform areas. Furthermore, the algorithm is controlled 

by an entropy criterion so that it achieves an optimal 

bandwidth allocation between the DFD information and the 

motion parameters. Simulation results have shown that the 

method results in a greatly enhanced visual quality of the 

reconstructed sequence and a significant saving in terms of 
bit rate. 
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