
 

Motion Estimation Techniques 

Béatrice Pesquet-Popescu, Marco Cagnazzo, Frédéric Dufaux 

TELECOM ParisTech 

Table of content 
Glossary ..................................................................................................................... 4 

Nomenclature ........................................................................................................... 5 

1 Introduction ..................................................................................................... 7 

2 Motion representation and models ................................................................. 8 

2.1. 2D motion vector field and optical flow ................................................... 8 

2.2. The aperture problem ............................................................................... 9 

2.3. Motion representation ........................................................................... 10 

2.3.1. Brightness constancy motion model and the optical flow equation
 10 

2.3.2. Parametric motion models ............................................................. 13 

2.3.3. Region of support ............................................................................ 15 

2.3.4. Considerations from a video coding viewpoint .............................. 16 

3 Optical flow approaches................................................................................. 17 

3.1. Horn-Schunck .......................................................................................... 17 

3.2. Lucas-Kanade .......................................................................................... 18 

3.3. Discussion ................................................................................................ 19 

4 Pel-recursive approaches ............................................................................... 20 

4.1. Netravali-Robbins.................................................................................... 20 

4.2. Cafforio-Rocca ......................................................................................... 21 

4.3. Discussion ................................................................................................ 23 

5 Transform-domain approaches ...................................................................... 24 

5.1. Motion estimation in the Fourier or DCT domain .................................. 24 



6 Block matching approaches ........................................................................... 25 

6.1. Search window and search strategy ....................................................... 27 

6.1.1. Full search ....................................................................................... 28 

6.1.2. Fast search: definitions ................................................................... 29 

6.1.3. 2D-logarithmic search ..................................................................... 29 

6.1.4. Conjugate directions search ............................................................ 30 

6.1.5. Three-steps search .......................................................................... 31 

6.1.6. Diamond search .............................................................................. 33 

6.1.7. Hexagon search ............................................................................... 35 

6.2. Matching criterion .................................................................................. 36 

6.2.1. Norm-based criteria ........................................................................ 36 

6.2.2. An illumination-invariant criterion.................................................. 39 

6.2.3. Correlation-based criteria ............................................................... 39 

6.2.4. A criterion for wavelet-based compression .................................... 41 

6.3. Sub-pixel accuracy................................................................................... 41 

6.4. Variable-size block matching .................................................................. 44 

7 Parametric motion estimation ....................................................................... 46 

7.1. Indirect parametric motion estimation .................................................. 46 

7.2. Direct parametric motion estimation ..................................................... 47 

7.3. Robust estimation ................................................................................... 49 

8 Multi-resolution approaches .......................................................................... 50 

9 Motion compensation .................................................................................... 53 

9.1. Motion compensation in H.264/AVC ...................................................... 54 

9.1.1. Macroblocks and partitions ............................................................ 55 

9.1.2. Multiple references and generalized P/B frames ........................... 55 

9.1.3. Rate-constraint Lagrangian motion estimation .............................. 56 

9.1.4. Preview of forthcoming HEVC ......................................................... 57 

9.2. Overlapped Block Motion Compensation ............................................... 58 

9.3. Global Motion Compensation ................................................................. 59 

9.4. Sprites ..................................................................................................... 61 



10 Performance assessment criteria for motion estimation algorithms ............ 63 

10.1. Assessment of optical flow techniques ............................................... 64 

10.2. Assessment of motion estimation for video coding ........................... 65 

11 Summary and concluding remarks ................................................................. 67 

References .............................................................................................................. 68 

Relevant Websites .................................................................................................. 76 

 

 

  



 
 

Glossary 

2D motion vector field: the 2D motion vector field is defined as the projection of 
the 3D objects motion onto the 2D image plane. 

Aperture problem: when observing a moving structure through a small aperture, 
different physical motions appear indistinguishable 

Block matching: Motion estimation algorithms based on the matching of blocks 
between two frames, with the objective to minimize a dissimilarity measure. 

Brightness constancy: Assumption that a pixel intensity remains constant along a 
motion trajectory. In other words, variations in time of the pixel intensity are 
exclusively due to the objects displacements. 

Dense motion field: Motion field which represents motion by assigning one 
motion vector to each image pixel. 

Lambertian reflectance: An ideal diffusely reflecting surface, whose apparent 
brightness is the same regardless of an observer view angle. 

Motion compensation: To perform temporal processing on pixels along motion 
trajectories, i.e. shifted by a motion vector, instead of on co-located pixels. In 
video coding, motion compensated prediction refers to the prediction of a block 
by using a shifted previously encoded block, where the shift correspond to the 
estimated motion vector. 

Motion trajectory: The path that a pixel follows through space and time when 
considering an image sequence as a three-dimensional continuous spatio-
temporal field. 

Multi-resolution motion estimation: Techniques based on a multi-resolution or 
multi-scale data representation, which first compute a coarse estimate of the 
motion field at the lowest resolution level and then progressively refine it at 
successively higher resolution levels.  

Occlusion, Disocclusion: An occlusion refers to a region or object which is partially 
or fully hidden by another object closer to the camera. A disocclusion denotes a 
newly appearing region or object which was previously occluded. 

Optical flow: the optical flow is defined as the apparent motion of the brightness 
pattern. In other words, the optical flow captures the spatio-temporal variation of 
pixel intensities in an image sequence. 

Outlier: an outlier is sample which markedly deviates from the rest of the data 
samples. 



Sprite: a sprite, also known as mosaic or panoramic image, refers to a large 
composite image obtained by aligning and blending pixels from multiple displaced 
images 

Rate-distortion: in the context of lossy data compression, the optimal 
minimization of the date rate in order to be able to reconstruct the source 
without exceeding a given distortion, or reciprocally, the minimization of the 
reconstruction distortion for a given data rate. 

Region of support: The region of support is the set of image pixels to which a 
motion model applies. 

Parametric motion model: A parametric motion model represents the motion of a 
region characterized by a coherent motion with a set of parameters, also known 
as motion parameters. 

 

Nomenclature 

2D: Two-dimensional 

3D: Three-dimensional 

AE: Angular Error 

AVC: Advanced Video Coding 

DCT: Discrete Cosine Transform 

DFD: Displaced Frame Difference 

DWT: Discrete Wavelet Transform 

EE: Error in flow Endpoint 

FFT: Fast Fourier Transform 

FIR: Finite Impulse Response  

GMC: Global Motion Compensation 

GME: Global Motion Estimation 

HEVC: High Efficiency Video Coding 

HVS: Human Visual System  

HSV: Hue, Saturation, Value 

IE: Interpolation Error 

IIR: Infinite Impulse Response  

LMC: Local Motion Compensation 



LME: Local Motion Estimation 

LMedS: Least Median of Squares 

LMS: Least Mean Square 

LTS: Least-Trimmed Squares 

MAE:  Mean Absolute Error 

MB: MacroBlock 

MC: Motion Compensation 

ME: Motion Estimation 

MPEG: Moving Picture Experts Group 

MSE: Mean Squared Error 

MVF: Motion Vector Field  

NE: Normalized interpolation Error 

OBMC: Overlapped Block Motion Compensation 

PB: Prediction Block 

PSNR: Peak Signal-to-Noise Ratio 

RD: Rate-Distortion 

RDO: Rate-Distortion Optimization 

RMS: Root-Mean-Square 

RS: Recursive Search 

SAD: Sum of Absolute Difference 

SSD: Sum of Squared Difference 

SSIM: Structural SIMilarity 

SVD: Singular Value Decomposition 

TV: Total Variation 

VIF: Visual Information Fidelity 

VOP: Video Object Plan 

ZN-SSD: Zero-mean Normalized SSD 



1 Introduction 

Digital video is becoming ubiquitous, thanks to tremendous technological 
progresses over the last decades, with widespread applications in information 
technology, telecommunications, consumer electronics and entertainment. 

In video sequences, motion is a key source of information. Motion arises due to 
moving objects in the 3D scene, as well as camera motion. Apparent motion, also 
known as optical flow, captures the resulting spatio-temporal variations of pixel 
intensities in successive images of a sequence. The purpose of motion estimation 
techniques is to recover this information by analyzing the image content. Efficient 
and accurate motion estimation is an essential component in the domains of 
image sequence analysis, computer vision and video communication.  

In the context of image sequence analysis and computer vision, the objective of 
motion estimation algorithms is to precisely and faithfully model the motion in 
the scene.  This information is fundamental for video understanding and object 
tracking. Relevant applications include video surveillance, robotics, autonomous 
vehicles navigation, human motion analysis, quality control in manufacturing, 
video search and retrieval, and video restoration. Accurate motion is also 
important in some video processing tasks such as frame rate conversion or de-
interlacing. 

As far as video coding is concerned, compression is achieved by exploiting data 
redundancies in both the spatial and temporal dimensions. Spatial redundancies 
reduction is largely achieved by transform-coding, e.g. using the Discrete Cosine 
Transform (DCT) or the Discrete Wavelet Transform (DWT), which effectively 
compacts the signal energy into a few significant coefficients. In turn, temporal 
redundancies are reduced by means of predictive coding. Observing that temporal 
correlation is maximized along motion trajectories, motion compensated 
prediction is used for this purpose. In this context, the main objective of motion 
estimation is no longer to find the 'true' motion in the scene, but rather to 
maximize compression efficiency. In other words, motion vectors should provide a 
precise prediction of the signal. Moreover, the motion information should enable 
a compact representation, as it has to be transmitted as overhead in the 
compressed code stream. Efficient motion estimation is key to achieve high 
compression in video coding applications such as TV broadcasting, Internet video 
streaming, digital cinema, DVD, Blu-ray Disc, and video-conferencing,  

We should also note a duality between motion estimation and segmentation 
operations. More specifically, in order to correctly estimate motion, regions of 
homogeneous motion need to be known. Conversely, for accurate segmentation 
of these regions, it is necessary to previously perform motion estimation. This 
problem can be tackled by joint motion estimation and segmentation techniques. 



However, in this chapter, we will exclusively focus on the motion estimation 
aspects. 

As a final remark, perception of motion by the Human Visual System (HVS) is also 
an important topic. Measurement and interpretation of visual motion is discussed 
in (Hildreth, 1984) and (Ullman, 1979). Better understanding of human perception 
could help to improve current motion estimation techniques, or lead to new 
approaches. 

Based on the above discussion, motion estimation is clearly a vast and complex 
topic. The purpose of this chapter is to give a broad overview of motion 
estimation techniques with a special emphasis on video compression 
requirements. 

As a complement to this chapter, readers may refer to earlier surveys, including 
(Tziritas and Labit, 1994), (Dufaux and Moscheni, 1995), (Stiller and Konrad, 1999), 
and (Fleet and Weiss, 2006). 

2 Motion representation and models 

2.1. 2D motion vector field and optical flow 

While we all have an intuitive understanding of the concept of motion, this notion 
deserves to be clarified in the case of digital video processing.  

Motion is unambiguously defined in the physical three-dimensional (3D) world. 
However, hen capturing an image, a two-dimensional (2D) projection of the 3D 
scene is performed. Straightforwardly, the motion arising in an image sequence is 
also the direct product of the projection of the objects displacement in the 3D 
scene.  

In particular, we can make a distinction between two different concepts: the 2D 
motion vector field and the optical flow. More specifically, the 2D motion vector 
field is defined as the projection of the 3D objects motion onto the 2D image 
plane (Horn, 1986). In contrast, the optical flow is defined as apparent motion of 
the brightness pattern (Horn, 1986). In other words, the optical flow captures the 
spatio-temporal variation of pixel intensities.  

The 2D motion vector field and the optical flow often coincide, although it is not 
mandatory. To better understand the difference, let us consider two simple 
examples. Figure 1 shows a three-dimensional uniform sphere in pure rotation 
and under constant illumination. In this case, the 2D motion vector field is non-
zero. However, this motion leads to a constant brightness pattern, and therefore 
the optical flow is zero. Conversely, Figure 2 depicts a static reflecting surface, 
illuminated by a moving light source. In this case, the 2D motion vector field is 
zero, whereas the optical flow is non-zero. 



 

Figure 1 - Three-dimensional uniform sphere in rotation under constant 

illumination. 

 

Figure 2 - Static reflecting surface illuminated by a moving light source. 

In this chapter, we more specifically consider motion estimation techniques for 
video coding. The objective is to estimate the displacement of pixels between 
successive images in order to predict the pixel intensities, in other words the 
optical flow is estimated. However, for the sake of simplicity, we will 
interchangeably use the terms 2D motion vector field and optical flow throughout 
the chapter as it is the usage in the video processing community. 

2.2. The aperture problem 

The aperture problem occurs when observing a moving structure through a small 
aperture. More specifically, under this condition, different physical motions 
appear indistinguishable. This phenomenon is illustrated in Figure 3. A bar is 
moving horizontally (top) or vertically (bottom). When seen through a small 
aperture, which only shows a part of the whole object, both the horizontal and 
vertical displacements produce the same appearance and therefore cannot be 
distinguished (right-hand side).   
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image 

image 
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vertical displacement
 

Figure 3 - Aperture problem: when observing a moving structure through a 

small aperture, different physical motions appear indistinguishable:  

(top-right) bar with horizontal displacement seen through aperture,  

(bottom-right) bar with vertical displacement seen through aperture. 

The same aperture problem happens with motion sensitive neurons in the visual 
primary cortex (Hildreth, 1984). These neurons, with a finite receptive field, 
always react to a moving contour that passes through their receptive field, as long 
as it is consistent with the neuron preferred direction and regardless of the true 
motion orientation.  

2.3. Motion representation 

In order to define a motion representation, two issues have to be considered. 
Firstly, a model underlying the motion representation needs to be specified. 
Secondly, the region of support to which the model applies has to be identified. 
We discuss these two subjects in more details hereafter. 

2.3.1. Brightness constancy motion model and the optical flow equation 

An image sequence can be considered as a three-dimensional continuous spatio-
temporal field: f(x,y,t), where (x,y) are the spatial coordinates and t is the time 
index. However, in practice we only dispose of a discrete version of this function:  

),,( 21,, kTmLnLff kmn   , (1) 

where L1 and L2 are the sampling steps in the spatial domain, T is the temporal 
sampling step, and n, m and k are integers.  



In what follows, we shall make the following assumptions: 

 A pixel intensity remains unchanged along a motion trajectory. This 
assumption is known as the brightness constancy constraint. In other 
words, the variations in time of the pixel intensity are due to the 
displacements of different objects present in the scene. The brightness 
constancy constraint implies that the illumination is uniform and the 
scene is Lambertian. 

 The motion appears locally as a translation (which is the simplest, though 
effective, motion model). 

We then have the following brightness constancy motion model: 

),,(),,( tyyxxfTtyxf   , (2) 

where Δx and Δy are, respectively, the horizontal and vertical components of the 
displacement. Actually, these components depend on the spatial position, the 
temporal index t and the temporal sampling step T, but for the sake of simplicity, 
we will not make this dependence appear explicitly in the following. 

We can now derive the motion constraint or the optical flow equation. A first 
order Taylor expansion of the motion model defined in Eq. (2) leads to: 
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Let us define the displacement vector D as 















y

x
D  . (4) 

We remark that the vector containing the partial derivatives of the illumination 
field f with respect to the coordinates x and y is nothing else than the spatial 
gradient of the image,  
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Then we can write the same equation in a vector form, as follows: 
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where ),,(),( tyxfyxD
T
  is the inner product of the two vectors. 



Now, we define the velocity vector field in the sequence, also called optical flow, 
as: 
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With this definition, the original equation can be re-written as: 
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and if we develop it, we can write : 
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This equation is essential in all motion field estimation. It is called the motion 
constraint or the optical flow equation.  

We can make the two following observations:  

 the determination of the real displacement in the sequence from the 
motion constraint is under-determined, since we dispose of only one 
equation and we have two unknown variables (the optical flow 
components u and v. This problem, known as the aperture problem and 
already introduced in Sec. 2.2, can be easily understood from the vector 
form of the equation. In this case, we have an inner product between V 
and the gradient of the image. Clearly, only the component of the velocity 
vector parallel to the gradient can be determined. The other component 
is cancelled in the inner product (see Figure 4). 

 in order to solve this ambiguity, one generally has to add an homogeneity 
constraint for the displacement. Some methods to do this will be 
discussed in Sec. 3. 
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Figure 4 - Under-determination in the optical flow solution: V1, ..., Vn are 

several candidates with the same projection of the gradient direction. 



2.3.2. Parametric motion models 

Another approach is to model motion by a set of parameters. Such a model is 
efficient to represent the motion of a region whose pixels have a coherent 
motion. Moreover, parametric models result in very compact descriptors, as only 
a small set of parameters have to be transmitted. 

A simple model consists in considering in the image plane a polynomial 
approximation of the displacement (Tziritas and Labit, 1994). More formally, this 
polynomial model can be expressed as 
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where dx and dy are the two components of the motion vector, ai,j and bi,j 
represent the parameters of the model, and (x,y) are the pixel coordinates. 

For example, a first-order approximation leads to a description of the form 
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where tx, ty, a, k, h1 and h2 are the motion model parameters. In this example, tx 
and ty represent the translation parameters. The parameters a, x0, y0, k, h1 and h2 
are involved in the description of more complex displacements. For instance, as 
illustrated in Figure 5, a small rotation can be described uniquely using the 
parameter a, a divergent motion vector field will be described by k and a 
hyperbolic motion will be represented using h1 and h2 .  

Similar interpretations can be obtained by representing the three-dimensional 
motions of a rigid body in the space and projecting, under some hypotheses, 
these motions on the two-dimensional image plane. These hypotheses concern a 
small vision angle, small displacement orthogonal to the projection plane, small 

rotations around the axes in the image plane (Tziritas and Labit, 1994).  

From this standpoint, polynomial models can be derived: 

 translational motion model:   
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 In this case, a very simple zero-order polynomial form is obtained. It can be 
derived from a rigid translational 3D-motion under orthographic projection. 
However, this model fails to take into account zoom, rotation, pan and tilt. 
Nevertheless, thanks to its simplicity, it is widely used in block matching 



motion estimation techniques (see Sec. 6). Straightforwardly, any 2D shape is 
preserved after motion compensation using such a model.  

 affine motion model: 
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A first order polynomial form, the affine motion model can be derived from 
the 3D affine motion of a planar surface under orthographic projection. With 
the affine model, motion compensation conserves parallel lines. 

 

 

a) b)

 

c)  d)

 

Figure 5 - Parametric models for motion vector fields : a) divergence (k = 0.5); 

b) rotation (a = 0.5); c) hyperbolic field (h1 = 0.5); d) hyperbolic field (h2 = 0.5). 

 perspective (or projective) motion model: 
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Considering the 3D affine motion of a planar surface under perspective 
projection leads to the perspective (or projective) motion model with 8 
parameters. Clearly, the affine model is a special case of the perspective one, 
with a4=b4=0. With perspective model, lines remain lines after motion 
compensation. One drawback of this model is the difficulty to accurately 
estimate the parameters in the denominator term. 

 quadratic motion model: 
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This second order polynomial form can be derived from a 3D affine motion of 
a parabolic surface under orthographic projection. Again, the affine model is 
a special case, with a4= a5= a6=b4= b5= b6=0. The perspective model is also 
included as a Taylor approximation. Note that the quadratic model does no 
longer preserve lines after motion compensation. 

 bilinear motion model: 
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The bilinear model is obtained from the quadratic model by discarding 
square terms. However, it is not related to any physical 3D motion. 

Clearly, the more complex a motion model, the better its ability to precisely 
represent more complex motions. However, the number of parameters is also 
higher. Therefore, it makes the estimation process more difficult and complex, 
and possibly prone to errors. Moreover, a complex motion model does not allow 
for a compact representation of the motion information.  

2.3.3. Region of support 

The region of support is the set of image pixels to which a motion model applies. 
We can distinguish the following four cases: 

 Pixel-based: A motion vector is assigned to each pixel of the image, 
resulting in a dense motion field. It has the advantage to provide a precise 
description of the motion. However, from a video coding viewpoint, it 
entails a costly representation resulting in a large overhead for motion 
information. 

 Region-based: The motion model is applied to a region of the image which 
is characterized by a coherent motion. In this case, moving objects in the 
scene have to be identified. In (Diehl, 1991), a method is presented for 



segmenting video scenes hierarchically into differently moving objects. A 
system for representing moving images with sets of overlapping layers 
using motion analysis in proposed in (Wang and Adelson, 1994). 
Segmentation-based motion estimation and spatio-temporal 
segmentation are addressed in (Dufaux and Moscheni, 1996). In (Chang, 
Tekalp, Sezan, 1997) a Bayesian framework is presented that combines 
motion estimation and segmentation. 

In the context of video coding, such a representation requires to transmit 
the shape of the region, which entails a bit rate overhead. 

 Block-based: As a special case of the region-based support, a very 
frequent choice is to simply partition the image into blocks. If the block 
size is sufficiently small, then the assumption that the block is moving in a 
coherent way is likely to be valid. Another advantage of a block 
partitioning is that it does not require additional information to represent 
the shape of the region. 

 Global: The region of support simply encompasses the whole image. This 
case is especially suited to efficiently estimate camera motion. Indeed, 
camera motion such as dolly, track, boom, pan, tilt or roll, is an essential 
cinematic technique.   

The choices of the region of support and the motion model are closely 
intertwined. When using a complex parametric motion model, which can handle 
complex motions, a larger region of support can effectively be used. Conversely, a 
simple model is often sufficient in conjunction with a small region of support. 

2.3.4. Considerations from a video coding viewpoint 

We can clearly observe that, for video coding applications, selection of an optimal 
motion representation brings up contradictory requirements. On the one hand, 
the representation has to accurately characterize the motion information, even in 
the case of complex scenes with multiple moving objects. On the other hand, the 
representation needs to be compact for further efficient coding, transmission or 
storage. 

From a video coding viewpoint, the first two criteria should lead, foremost, to a 
good prediction (in other words, small prediction error), and simultaneously, to a 
low overhead information (therefore, easy-to-encode motion vector fields). This 
trade-off shows that the ultimate goal is not to obtain the real motion, even 
though a motion field close to the true motion in the scene avoids artificial 
discontinuities and reduces the transmission cost of the motion information, but 
to globally optimize the video coding scheme in a rate-distortion sense.  



In practice, in video coding, most schemes are based on a translational motion 
model combined with a block-based partitioning, as a good trade-off between 
motion accuracy and the overhead to represent motion information. 

3 Optical flow approaches 

In this section, we present optical flow estimation approaches, which have been 
mainly developed for image sequence analysis applications and computer vision 
(Horn, 1986).  

The methods entering this category are mainly based on gradient techniques, with 
the common objective to solve the motion constraint or optical flow equation, as 
defined in Sec 2.3.1. More precisely, we present two classical optical flow 
algorithms: Horn-Schunk (Horn and Schunk, 1981) and Lucas-Kanade (Lucas and 
Kanade, 1981).  

3.1. Horn-Schunck 

We now present one of the methods using this differential approach, based on a 
global optimization. 

The method we describe here uses a minimization of a cost function, which 
combines the optimization of the optical flow constraint, as defined in Eq. (9), 
with a constraint on the smoothness of the motion vector field. This method is 
referred to as the Horn-Schunck algorithm (Horn and Schunck, 1981). 

The cost function JHS(V) is defined as follow: 
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where  is the support on which the optimization is performed, namely it can be 

a region or the entire image, and  is a positive constant.  

The first term in the above expression is a mean square error on the motion 
constraint, while the second one is a regularization term: it allows ensuring that 
the gradient of the motion vector field takes small values ("smoothness" of the 

solution). In this criterion,  is the regularization constant, which allows to trade 
off the influence of the regularization term and the minimization of the motion 
constraint. Remark that the integrals are on an arbitrary region where the motion 
is homogeneous, meaning that this technique can be adapted to region-based 
motion estimation or to a joint segmentation-motion estimation solution. 



After some mathematical developments involving the minimization of the cost 
function, we arrive at the following solution for the two components of the 
motion vector field: 
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where 
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
  is the Laplacian operator. The following observations can 

be made concerning this method: 

 This global optimization is quite complex, involving the resolution of a 
system of partial differential equations.  

 The choice of  is critical. On the one hand, it leads to a different 
smoothness of the field. On the other hand, it influences the numerical 
stability of the system. 

3.2. Lucas-Kanade 

The Lucas-Kanade method is another classical approach for optical flow 
estimation (Lucas and Kanade, 1981). In this method, the assumption is made that 
the optical flow is approximately constant in a small neighborhood, instead of 
adding a smoothness constraint as in the Horn-Schunck algorithm.  

More precisely, the motion vector V=(u,v) is assumed to be constant in a local 

region  around the pixel being processed. In other words, the optical flow 

equation expressed at all pixel locations (xi,yi) ϵ , i=1, ... n, leads to a set of n 
equations: 
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In the Lucas-Kanade method, the optical flow is then obtained by Least Squares 
minimization of the following cost function JLK(V) 
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where the weighting factors wi have been introduced to give larger weights to 
pixel locations (xi,yi) which are near the region center.  

Note that this is also the assumption made in block matching (or region matching) 
algorithms. 

3.3. Discussion 

Optical flow approaches result in dense motion vector field (one vector per pixel), 
which is qualitatively interesting for motion analysis applications.  However, they 
also have several weaknesses: 

 The derivation of the optical flow equation is based on a first order Taylor 
series expansion. This only holds under the hypothesis that the motion 
between two frames is small. 

 The equations are written for continuous-time and continuous-space 
variables and require to estimate the image gradient. For solving them, 
we need to discretize these variables. However, this sampling process 
introduces errors in the solution. In particular, gradient computation is 
sensitive to noise and is therefore subject to errors. 

 The smoothness constraint (Horn-Schunck) or the local uniformity 
constraint (Lucas-Kanade) results in a poor accuracy along moving objects 
boundaries. 

In order to address the above shortcomings, numerous advances have been 
proposed resulting in improved performance.  

Instead of the above formulation based on a L2 norm, the L1 norm is also a 
frequent choice (Brox, Bruhn, Papenberg et al., 2004), both for the optical flow 
equation and for the additional constraint (e.g. smoothness). In this case, one 
refers to the class of Total Variation (TV) methods. 

A model to handle changes in illumination and blur is proposed in (Seitz and 
Baker, 2009). It also includes spatial weighting of the smoothnes constraint. 
Anisotropic smoothness weighting is considered in (Zimmer, Bruhn, Weickert et 
al., 2009). The method also applies different weighting to color channels in the 
HSV color space. 

A novel extended coarse-to-fine refinement framework is introduced in (Xu, Jia 
and Matsushita, 2012).  The reliance on the initial flow estimates propagated from 
a coarser level is reduced. Hence, motion details are better preserved at each 



scale. An adaptation of the objective function to handle outliers and a new 
optimization procedure are also proposed.  

For a more detailed and in-depth tutorial on optical flow techniques, the reader is 
referred to (Fleet and Weiss, 2006). 

An extensive performance comparison of several algorithms is given in (Barron, 
Fleet and Beauchemin, 1994). More recently, a new set of benchmarks and 
evaluation methods for optical flow techniques have been introduced in (Baker, S. 
Scharstein, D.  Lewis, J.P. et al., 2011). A taxonomy of optical flow algorithms is 
also presented, along with a discussion of recent works. At the time of this 
writing, the method by (Xu, Jia and Matsushita, 2012) is one of the best 
performing techniques reported in the on-line optical flow evaluation database at 
http://vision.middlebury.edu/flow/. 

From a video coding perspective, the fact that a dense motion field is obtained is 
not necessarily a positive point. Indeed, this field has to be encoded, which may 
result in a high bit rate overhead. 

4 Pel-recursive approaches 

Pel-recursive approaches are among the earliest methods to estimate motion with 
the objective of video coding applications. Essentially, these techniques 
recursively estimate the displacement which minimizes the Displaced Frame 
Difference (DFD) defined as 

)1,,(),,(  kymxnfkmnfDFD  , (22) 

Note that here we consider the discrete spatial and temporal coordinates. The 
image is typically scanned in a raster order, performing the recursion on a pel-by-
pel basis.  

4.1. Netravali-Robbins 

The first pel-recursive motion estimation algorithm was proposed by (Netravali 
and Robbins, 1979). This method aims at minimizing the square of the DFD using a 
steepest descent technique. Considering the current pixel position (n,m) and the 
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where D denotes the gradient with respect to D, and ε>0 is a constant gain. 

Developing the second term, we straightforwardly obtain 
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Therefore, by substitution, the motion vector update can be rewritten as 
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The iteration from i to i+1 can be carried out at one given pixel location, or from 
one location to the next one. 

In order to make a more robust estimation of the DFD, it can be computed in a 
neighborhood around the pixel (n,m). Furthermore, bilinear interpolation is used 
when the displacement is not an integer numbers of pixels. 

4.2. Cafforio-Rocca 

In this section, we describe an improved pel-recursive algorithm, known as 
Cafforio-Rocca algorithm (Cafforio and Rocca, 1983).  

At each pixel location, in a raster scan order, the following operations are 
performed: 

1) Initialization of the motion vector 

As an initial estimate of the motion vector, the vector obtained at the previous 
position in the scanning order is chosen. Namely, if (n,m) is the current position, 
and Dn,m the motion vector at this position, then the initial estimate will be: 

mnmn DD ,1

)0(
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where mnD ,1  is the motion vector estimated at the previous point in the scanning 

order. 

Alternatives can be considered to compute this initial estimate. For example, 
another possibility is to consider an average of several of the previously estimated 
motion vectors. Note, however, that the causality induced by the scanning order 
has to be respected, in order to be able to perform the same operations at the 
decoder.  

2) Reliability test of the initial estimate 

After this initialization, the next step is to check that the value of the a priori 
estimation is correct. This test is necessary in order to take into account the 
following sources of errors: 

 strong variations of the motion vectors from one position to the next, 
related to objects with different motions; 

 the divergence of the motion estimation algorithm itself. 



For this purpose, let us consider therefore the criterion built on the following 
expressions: 
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In other words, R is made of two terms. The first one is the estimation error 
resulting from the a priori initial prediction and the second one is the simple inter-
image difference. We also define a threshold value s>0. If (R>s), the motion 
estimation is re-initialized to 0, otherwise the a priori estimation at pixel (n,m), as 
defined in step 1, is kept. More specifically, the criterion is: 
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3) Refinement of the estimation 

This is the most important step of the algorithm, updating the motion vector. The 
actual value of the motion vector is computed as the initial value (validated or re-
initialized by the reliability test) plus an update vector, as follows: 

mnmnmn DDD ,
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The update vector is chosen so as to minimize a cost function as a trade-off 
between the prediction error and the amplitude of the update vector. Note that it 
is similar to the one used in Horn-Schunck (See Sec. 3.1). More precisely, the cost 
function is written as: 
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with the previous motion estimate 
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the update vector 
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and  is a positive regularization constant. 

With a first order Taylor expansion around the previous estimation, we can write 
the previous image compensated with the updated vector: 
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where  
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is the gradient of the previous image, compensated with the initial motion vector. 
Thus we can re-write the cost function as 
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where we introduced 
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which denotes the prediction error using the initial motion vector in order to 
simplify the notation. The minimum of the cost function with respect to the 
update vector is obtained by cancelling its derivative. This leads to the following 
value of the update vector: 
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Straightforwardly, the last step of the algorithm consists in updating the motion 
vector with this quantity: 
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The choice of the regularization parameter  and of the threshold s is very 
important and can lead to the divergence of the algorithm when they are not well 
managed. 

4.3. Discussion 

The following remarks can be made regarding pel-recursive approaches such as 
Netravali-Robbins or Cafforio-Rocca. Firstly, these pel-recursive techniques are 
relatively easy to implement. Convergence can be slow and the motion estimation 



is not always of very good quality. This is especially the case when the 
displacement is important or when there are large motion discontinuities at 
object borders. This limitation is mostly due to the recursive nature of the 
algorithm with a causality constraint. 

In order to improve convergence and performance, other pel-recursive motion 
estimation techniques have been proposed. Better adaptation to local statistics is 
obtained in (Walker and Rao, 1984). A Wiener-based displacement estimation 
algorithm is introduced in (Biemond, Looijenga and Boekee, 1987). A multiple 
frames model-based approach is proposed in (Efstratiadis and Katsaggelos, 1990). 
Finally, a multiple mask regularization technique is introduced in (Efstratiadis and 
Katsaggelos, 1993). 

There are some advantages of the pel-recursive methods over other existing 
approaches. Provided that the recursion has a quick enough convergence (i.e., it 
can handle the motion discontinuities), the pel-recursive algorithms may 
overcome the problem of multiple moving objects. Moreover, as the update 
vector calculation is based only on previously transmitted data (causality), the 
decoder can estimate the same motion vector field as the encoder. No overhead 
information is thus required for transmitting the motion vector field, which is of 
course a big advantage of these methods in video coding applications. The 
counterpart is that the decoder has to do the same operations as the encoder in 
order to find the motion vectors, which will lead to an increased computational 
complexity. 

5 Transform-domain approaches  

The common idea of transform-domain approaches is to estimate the motion 
vectors from a measure performed in the transform domain, for instance with a 
Fourier transform, a Discrete Cosine Transform (DCT) or a Discrete Wavelet 
Transform (DWT). For this purpose, the effect of the 2D motion on the 
characteristics of the transform has to be studied. 

5.1. Motion estimation in the Fourier or DCT domain 

Let us first consider the case of motion estimation in the Fourier domain (Haskell, 
1974), (Fleet and Jepson, 1990). In this case, a translation in the spatial domain 
corresponds to a phase-change of the Fourier coefficients. Instead of minimizing a 
dissimilarity, for instance using Mean Square Error (MSE) or Mean Absolute Error 
(MAE) as in block matching techniques (see Sec. 6), a phase correlation between 
blocks is usually performed. Therefore, these methods are sometimes referred to 
as phase-correlation methods. 

A common drawback of such methods is that it is difficult to characterize complex 
motions in the transform domain. As a consequence, a simple motion model has 



to be adopted, which may adversely affect the precision of the motion estimation 
process. Nevertheless, correlation-based methods have been successfully applied 
for the estimation of global motion. 

Similarly, the same ideas can be applied in the DCT domain (Koc and Ray Liu, 
1994).  DCT seems more appropriate than the Fourier transform. Indeed, most 
video coding schemes are based on a DCT of the residual signal, and it is therefore 
more coherent to use the same transform for motion estimation and for the 
prediction error coding. However, such an approach faces the same difficulties as 
for the Fourier representations. 

6 Block matching approaches 

Block matching methods have been more specifically developed in the framework 
of image sequence coding. All video coding standards to date, including 
H.264/AVC (Wiegand, Sullivan, Bjontegaard et al., 2003) and the forthcoming 
HEVC (Ohm and Sullivan, 2013), are based on this paradigm. This class of 
techniques is therefore more thoroughly discussed in this section. 

Block matching methods enter the category of matching primitive techniques. The 
aim is to minimize a dissimilarity measure. In particular, the fact that the same 
motion vector is estimated over an entire block can be seen as an additional 
"smoothness" constraint for solving the motion equation. In this way, the under-
determined system can be solved. In addition, these methods will be quite robust 
to noise, which is not always the case with methods providing dense motion 
fields, such as the global optimization and the pel-recursive techniques. 

Let us introduce some notation. Let us consider images of size N x M. A block Bp,q 
is a set of indexes defined starting from (p,q) and whose size is P x Q:  

   1,...,1,1,...,1,,  QqqqPpppB qp . (40) 

The current image is divided into non-overlapping rectangular blocks  as shown in 
Figure 6.  The typical values for P and Q are 4, 8 or 16, but larger block-sizes are 
possible in the upcoming standard HEVC (Ohm and Sullivan, 2013).  



 

Figure 6 - An image from the container sequences, divided into non-

overlapping blocks of 32 x 32 pixels. A single block Bp,q is highlighted.   

In any case, for all the pixels in the block, a single motion vector is computed. 
With a small abuse of notation, we will refer to the vector of image intensity 
values within the block as fk(Bp,q): 
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The block matching motion estimation is performed by computing a similarity 
measure between fk(Bp,q) and fh(Bp-i,q-j), i.e. by  comparing the intensity values in a 
block of the current image fk and those in a block of a second image fh, called 
reference. This second block is displaced from the initial position (p,q) by a vector 
D=(i,j) that is called candidate motion vector. 

The case where h=k-1,(i.e. when we look for the displacement of blocks in the 
previous image) is called forward motion estimation and is shown in Figure 7. 
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Figure 7 - Block matching algorithm with forward motion estimation. 

The candidate vector that minimizes a suitable similarity measure between the 
blocks is the estimated vector for the block Bp,q : 
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where W is a suitable set of candidate vectors, commonly called search window. 
For a given block, the function to be minimized in Eq. (42) depends only on the 
candidate vector, so we will shorten it as J(i,j). As a consequence, Eq. (42) 
becomes: 
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Equations (42) and (43) contain the essence of the method. The various versions 
of  block-matching differ among them for: 

1. The search strategy, i.e. how the search window is scanned in order to 
find the best vector 

2. The matching criterion, that is the function d(.,.) used in Eq. (42) 
3. The block size and shape 

These elements are addressed in the next subsections, which will be concluded by 
considering some other issues such as sub-pixel accuracy and recent advances. 

6.1. Search window and search strategy 

The motion vector is selected within a suitable set of candidate vectors. This set is 
called search window and represents the area where the most similar block will be 
searched. In the most common case, the search window corresponds to a 
rectangular area centered in the block Bp,q of the reference image. An example of 
search window is shown in Figure 8.  

The structure of the search windows has a huge impact on both the complexity of 
the motion estimation algorithm and on its precision. Therefore the choices of the 



search window and of the associated search strategy are critical for a motion 
estimation algorithm. 

 

Figure 8 - Left: the current image with the block Bp,q highlighted. Right: the 

reference image. The search window centered in (p,q) is shown. 

6.1.1. Full search 

A very intuitive choice for the search area is the whole reference image: the block 
Bp,q is compared to all possible blocks of the reference image. However this 
approach is extremely complex, since the number of candidate blocks is (N-P) x 
(M-Q) ≈ NM, and for each candidate block we have to compute the similarity 
measure. 

However, it is not necessary to consider all pixels in the reference image: 
according to the characteristics of the movement and to the resolution of the 
image, typically it suffices to consider a rectangular area centered in the position 
(p,q). 

Formally, the search window W is defined as a set of vectors: 

   BBAAW ,...,1,0,1,...,,...,1,0,1,...,   . (44) 

The horizontal and vertical size of the search area can be different, according to 
the fact that horizontal movements are usually wider than vertical ones in natural 
videos. However, for the sake of simplicity, A and B have very often the same 
value, as we will assume in the following. Also, we refer to n=2A+1 as the width of 
the search windows. 

In order to solve Eqs. (42) or (43) with this definition of W, we need to compute 
the criterion for n2 candidates: this approach is called full search. 

Full search assures to find the best motion vector (i.e. the one minimizing the 
criterion) within all displacements of no more than A pixels in whichever direction, 
but has a relatively large complexity, proportional to n2. However, this technique 
lends itself to a parallel implementation since the estimation can be performed 
independently for each block of the current image. 



Other techniques exist that allow to find a motion vector with a smaller 
complexity, but they are suboptimal, in the sense that they cannot assure that the 
best vector among all those having components bounded by A will be found. The 
most popular sub-optimal search strategies are described in the following.  

6.1.2. Fast search: definitions  

In order to reduce the computational complexity of the full search method 
presented above, sub-optimal techniques have been proposed. The basic idea is 
to select a subset of {-A,…A}2 as search window. In this way, we still may estimate 
large movements, but with less than n2 computations of the criterion. 

Fast search techniques are generally iterative. We start with a search window 
made up of a few and relatively large vectors, and with an initial candidate vector 
(i0,j0), e.g. (0,0).  

At the k-th step, the current best vector (ik,jk) is selected by full search in the 
current search window Wk. Then, the search window is modified: typically it is 
centered on (ik,jk)  and possibly scaled. A proper stopping condition is needed: for 
example a maximum number of iterations or a condition on the elements of Wk. 

 The general structure of the algorithm is the following: 

1. Initialization:  we set k=0, and we choose W1 and (i0,j0) 
2. While the stop condition is not met, 

a. k=k+1 
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Of course, the key feature of this algorithm is the modification of the search 
window at each step, represented by the function φ. We also notice that, if K 
iterations are performed, the number of criterion computations is 
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6.1.3. 2D-logarithmic search  

In the 2D-logarithimic search (Jain and Jain, 1981), we start with a rough search 
grid, and we refine it when the current estimated vector is the center of the 
current search area. 

For this case, we need to define the following sets of indexes: 
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We start with a given (i0,j0), for example the null vector. We select the initial 

search area )2(1

mW  . Typically, m=3 or 4. The value rk=2m  is the current radius 

of the search area.  The general step of the algorithm is as follows. If the radius is 
not 1, the matching criterion is computed for the five candidates of the current 
window. If the best (ik,jk)  candidate is the central one, we halve the search radius 
and set  
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)} Otherwise we just center the search 

window on the best candidate, and keep the same radius for the search area:  
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The search patterns are shown in Figure 9. 

Finally, if the search radius is equal to 1, the matching criterion is computed on 
the nine candidates of the current window, which is formed by the previous best 
candidate and its eight neighbors. 

One of the main drawbacks of this algorithm is that the number of iterations is 
variable and therefore, the complexity of the whole procedure is not perfectly 
managed. 

6.1.4. Conjugate directions search 

The basic idea of this method is to perform one-dimensional searches in each 
iteration. We start by a searching window of the form 

 kkkk WjijijiW  ),(|),(),(1  , (50) 
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      0,1,0,0,0,1 kW  . (51) 

This is performed for the horizontal search, and we continue in this direction as 
long as the current best vector is different from the center of the window and we 
do not reach a picture boundary. When one of these two cases arises, then we 
switch to the vertical search, and we set the searching window to 

      1,0,0,0,1,0  kW  . (52) 



When again a zero motion vector is found, either the estimation is stopped, or a 
third step can be envisaged, involving a search in the direction given by the 
original estimation point and the previous estimation. Note however that this step 
is optional and it can be skipped if a limited-complexity algorithm is targeted. 

A similar algorithm is the cross-search (Ghanbari, 1990), where the search is 
performed separately in each dimension. In this case however, a full exploration 
of each direction is performed. In other words, we have only two steps, with 

   0,...,1,1  AAAW  , (53) 

and  

   AAAW ,...,1,02   . (54) 

The cross search algorithm requires the computation of the criterion 2n-1 times 
instead of n2 of the full search. 

6.1.5. Three-steps search 

As the name shows, the aim of this algorithm is to obtain uniform complexity, 
corresponding to 3 iterations, regardless of the motion activity (Koga, Iinuma, 
Hirano et al., 1981). This can be achieved, of course, only at the expense of a 
certain loss in the precision of the motion vector.  

The three-steps search (TSS) algorithm can be seen as a variant of the 2D-
logarithmic search with two differences:  

1) The search window is always composed by nine elements:  

2)  kkkk WjijijiW  ),(|),(),(1 ,  

with 

 22,0,2 kk

kW  . 

3) The search radius is halved at each step independently from the 
estimated vector. 

Therefore, if at the first iteration  2

1 4,0,4W     {      }
 , the 

algorithm will always stop after 3 steps. The corresponding search patterns are 
shown in Figure 10. The TSS algorithm allows finding displacements of ±7 pixels in 
both directions with only 25 computations of the criterion (nine for the first step 
and eight for both the second and the third, since the value of J for the center of 
the search window has been computed at the previous step). For comparison, the 
full search would have required 225 computations, but would also have provided 
the best vector. 



Some variations of the TSS have been proposed in literature, such as the new TSS 
(Li, Zeng and Liou, 1994) which is biased towards center points of the search 
windows and allows an early termination of the algorithm, or the four-steps 
search (Po and Ma, 1996), which reduces the complexity by checking only a subset 

of kW .  

 

Figure 9 - 2D-Log: Search patterns at different steps. 



 

Figure 10 - Three-steps search: search patterns. 

6.1.6. Diamond search 

The TSS and its variations used to be quite popular until the years 2000’s, when a 
new generation of fast block matching algorithms where developed. These 
algorithms are not limited to a 15 x 15 search area but still are very fast and 
effective, and therefore are very commonly used in practical applications such as 
video encoders. 

The diamond search (DS) (Zhu, S.; Ma, 2000) algorithms employs two search 
patterns as shown in Figure 11. At the first step, a large pattern with a diamond 
shape is selected (LDSP in Figure 11). According to fact that the best point is the 
center or not, the next search pattern is respectively  changed into a small 
diamond shape partner (SDSP) or is still a LDSP, as shown in Figure 12. Moreover, 
only a subset of the pattern points has to be checked at any new step, since the 
new pattern is always partially superposed to the old one. The algorithm stops 
when the best point of the SDSP has been found. In other words, in the DS, the 
LDSP moves in the reference image until the best position is the center of the 
pattern; then a last iteration of the algorithm is performed using the SDSP. 

 



 

Figure 11 - Large (LDPS) and small (SPDS) diamond search pattern. 

 

 

Figure 12 - The pattern for the next step is different according to the fact that 

a corner point (left) a side point (center) or the central point (right) are 

selected. 

The DS algorithm has very good performances since it has not a too small search 
pattern (which could trap the search algorithm into local minima) neither a too 
large one, such as the first pattern of the TSS, which could mislead the search path 
to a wrong direction. Moreover, the search area is not limited since the search 
pattern keeps moving until the central position of the LDSP is hit. 

Simulation experiments show that DS largely outperforms TSS in terms of motion 
estimation quality, achieving performances similar to NTSS but with a complexity 
reduction of more than 20%. Thanks to the effectiveness of this technique, it has 
been integrated in the reference software of the MPEG-4 video coding standard. 



6.1.7. Hexagon search 

The DS algorithm has proven that pattern shapes other than a square can lead to 
fast motion estimation algorithms. However, as one can see from Figure 12, the 
LDSP moves with a speed of 2 pixels per iteration along the vertical and horizontal 

directions, while it moves at only 2  pixel per iteration in the diagonal 
directions. This means that the algorithm could require too many iterations to find 
a diagonal motion vector. Therefore, a hexagonal search algorithm (HS) has been 
proposed (Zhu, Lin and Chau, 2002), with the patterns shown in Figure 13. The 
patterns move according to the scheme shown in Figure 14. As in the DS, when 
the central point of the large pattern is chosen, the algorithm performs a last 
iteration using the small pattern. The hexagonal search has two advantages with 
respect to the DS: first, whichever is the pattern motion, only three new points 
are tested per iteration; second, the pattern is more isotropic than the one of DS, 
and so diagonal direction are not penalized with respect to the horizontal one. As 
a consequence, the HS achieve the same motion estimation precision as DS with a 
complexity reduction close to 40%. The HS and some variations of it are 
integrated into the reference software of the H.264/MPEG-4 AVC standard 
(Wiegand, Sullivan, Bjontegaard et al., 2003). 

 

Figure 13 - Large (LHP) and small (SHP) hexagonal patterns. 

 



 

Figure 14 - The movement of the hexagonal pattern: the speed is two pixels 

per iteration in the horizontal direction and 236.25   pixels per iteration 

in the diagonal directions. 

6.2. Matching criterion 

In this section we discuss some of the most popular matching criteria for block-
based motion estimation. 

6.2.1. Norm-based criteria 

As shown in Eqs. (42) or (43), the blocks in the current and in the reference image are 

matched according to a suitable metric measuring their dissimilarity: 

 

    jqiphqpk BfBfdjiJ  ,, ,),(  . (55) 

The most natural approach is to use some distance between the vectors fk(Bp,q) and fh(Bp-i,q-

j), i.e. to compute the p-norm of their difference: 

    p

pjqiphqpk BfBfjiJ  ,,),(  . (56) 

Note that we raise the p-norm to the power p in order to get rid of the irrelevant 
p -order square root. If we set p=2, the block matching is performed minimizing 
the Euclidean distance between the vectors of image samples. In formulas, we 
have: 

    
2

),( ,

,,,,),( 



qpBmn

SSD hjminfkmnfjiJ  . (57) 



This matching criterion is referred to as the Sum of Squared Differences (SSD). 
Note that the using the SSD is equivalent to use the mean square error (MSE) 
between the current image and the compensated reference. The SSD is very 
popular, above all for compression applications and this for several reasons. First, 
the Euclidean distance is a very intuitive and easy to understand metric. Second, 
by minimizing the SSD, we minimize the mean square error between the current 
block fk(Bp,q) and the block fh(Bp-i,q-j), that is used as  prediction. Hence, this allows 
an efficient residual coding. In fact, the Motion Compensated (MC) prediction of 
the current image, i.e. a prediction of fk where fk(Bp,q) is replaced by fh(Bp-i,q-j), is 
often used to measure the quality of the motion estimation. By definition, no 
other criterion can provide a better result in this respect (for a given block size 
and search area). However, the SSD has some drawbacks. First, it is relatively 
complex, since it requires PQ multiplications to be computed (one per each pixel 
of the block). Second, if some pixels in the image are affected by noise, the square 
power tends to enhance the associated error, preventing to find the correct 
motion vector. Third, it does not take into account possible global illumination 
variations from one image to the other. 

In order to alleviate the first two problems, one can resort to the sum of absolute 
differences (SAD), defined as follows: 

   



qpBmn

SAD hjminfkmnfjiJ
,),(

,,,,),(  . (58) 

 

Figure 15 - Two images (223 and 227 respectively) from the test sequence 

flower and garden. 

The SAD is equivalent to the mean absolute error (MAE). In order to compare the 
SSD and SAD, we show in Figure 15 two images from a video sequence and in 
Figure 16 the motion vector fields obtained using block matching with the SSD 
(left) and the SAD (right) criteria. The two criteria have very close qualities: the 
MSE of the compensated image achieved by minimizing the SSD is only 0.16 dB 
smaller than the one obtained using SAD. We also observe that the two fields 
capture the global lateral motion of the sequence and the different apparent 



velocity of the foreground (the tree) and the background. However both methods 
fail at correctly estimating the movement of very homogenous areas (such as the 
sky in the left part of the image). In particular SSD seems to produce more outliers 
such as the vectors in red.  

 

 

Figure 16 - Estimated motion vector fields. Left: SSD criterion; right: SAD 

criterion.  

This lack of regularity affects both the capability of the ME to represent the real 
motion and the compression performances that can be achieved: an irregular 
MVF is more expensive to encode than a regular one. For example, the MVF 
estimated by SSD has an estimated coding cost of 2143 bits, while the slightly 
more regular field produced by SAD costs 2103 bits.  

We can improve the regularity of the MVF by explicitly introducing a smoothness 
constraint in the criterion:  

    ),(),( ,, jiRBfBfjiJ
p

pjqiphqpkREG    , (59) 

where R(i,j) is a suitable cost function and λ is a positive constant. As a 
consequence, the vector that has the smallest SSD or SAD is not selected if it is 
too irregular according to R. For example R could be the norm of the difference 
between (i,j) and a representative of its neighborhood: this would allow having a 
vector much different from its neighbors only when this is related to a new object 
(involving a large SSD or SAD reduction). In video compression applications, R(i,j) 
is the coding cost of the vector (i,j), as we shall describe in more details in Sec. 9.  

An example of regularized MVF is shown in Figure 17. We used the criterion in Eq. 
(59), with p=2.  The R function is the norm of the difference between (i,j) and the 
median vector of its causal neighborhood (three vectors) . The resulting MVF is 
visually more regular than those shown in Figure 16. This is confirmed by the 
estimated coding cost, which shrinks to 2008 bits, while the MC prediction quality 
is reduced by less than 0.1 dB. 



    

Figure 17 - Estimated MVF using a regularized SSD criterion. 

 

6.2.2. An illumination-invariant criterion 

Block-based matching algorithms are mainly used in compression; however, given 
their simplicity, they have been investigated in the context of other applications, 
where the objective is to find a MVF as close as possible to the actual motion. 
However, in these cases SSD and SAD show another limit: they cannot deal with 
global illumination changes. In this case, we can resort to a variant of SSD which is 
robust to affine luminance transformations: the Zero-mean Normalized SSD (ZN-
SSD). If we refer to the hth element of vector  fk(Bp,q) as fk(Bp,q)[h], we can 
introduce  the zero-mean version of vector fk(Bp,q) component by component:  

     
h
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We define then the ZN-SSD: 
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The main disadvantage of ZN-SSD is its computational complexity: for each 
candidate vector we need to perform about 3PQ multiplications. 

6.2.3. Correlation-based criteria 

It is known that the cross correlation (i.e. the scalar product) between two vectors 
is a measure of their similarity, and therefore one might think about using 



correlation-based criteria to perform block-matching. This is also motivated by the 
fact that fast algorithms exist to compute the correlation in the frequency 
domain. However, as we show in the following, the cross correlation itself has 
some major drawbacks and cannot reliably be used as matching criterion, while 
the normalized cross-correlation can effectively perform this task. 

Let us start by the relationship between norm-based and correlation-based 
criteria. The SSD between fk(Bp,q) and fh(Bp-i,q-j) can be written as: 
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In this expression, ‖fk(Bp,q)‖2  does not depend on (i,j). If the norm of the displaced 
block does not vary very much with (i,j), the minimizing the SSD criterion is almost 
equivalent to maximizing the correlation between the blocks: 
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The main advantage in using this criterion is that fast FFT-based implementations 
exist for the correlation calculation. On the other hand, the cross correlation is not 
very reliable for the following reasons: 

1) In natural images, the block-wise energy ‖fh(Bp-i,q-j)‖
2 actually varies with 

the position. Therefore the correlation of the original block with the real 
displaced block can be less than the correlation with a very bright spot in 
the reference image; 

2) The correlation coefficient is sensitive to global amplitude changes, such 
as those caused by changing global illumination conditions 

Therefore, a better criterion is the normalized correlation coefficient, defined as: 
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We observe that Eq. (64) is very similar to Eq. (61): the only difference is that the 
zero-mean cross correlation has replaced the zero-mean SSD at the numerator. 



Removing the local mean and normalizing allows to mitigate the impact of the 
two abovementioned problems of cross correlation. 

The normalized cross-correlation is typically used for feature tracking in an image 
sequence: in this case we look for the position of a single feature, which is no 
longer constrained to have a rectangular support. Therefore, Eq. (64) is simply 
modified, considering the vector of luminance values of the template instead of fk 
and a vector with the same shape (but displaced by (i,j)) instead of fh.  

The main reason for using normalized cross correlation instead of SSD is that, 
when the number of pixels of the feature is much smaller than the number of 
pixels of the image, frequency-domain implementations of Eq. (64) are very 
efficient in term of computational complexity. They are mainly based on FFT for 
the computation of the numerator and the computation of a cumulated sum over 
the image for the denominator. 

6.2.4. A criterion for wavelet-based compression 

Norm based criteria, such as SAD, SSD and their regularized version proved to be 
very effective for predictive video compression, since in this framework motion 
estimation and compensation are used to minimize the energy of the prediction 
error. It is interesting to notice that, when the temporal correlation of a video 
signal is not removed by predictive coding but by transform coding, as in the case 
of motion-compensated wavelet video coding, these criteria are no longer 
necessarily optimal. In facts, instead of minimizing the prediction error energy, in 
this case one should maximize the transform coding gain, defined as the ratio of 
geometric and arithmetic mean of the temporal wavelet subbands. These 
subbands are obtained by wavelet filtering along the motion direction, which in 
turns is computed by motion estimation. Therefore, the motion estimation should 
find out the trajectory maximizing the coding gain. This can be quite difficult in the 
general case, but for a class of simple yet effective temporal filters it has been 
found that optimal motion estimation should be performed on three consecutive 
frames, evaluating jointly the backward and forward motion vectors (Cagnazzo, 
Castaldo, André et al., 2005). If εB [εF] is the backward [forward] motion 
compensated error, instead of separately computing the MVFs that 
minimize‖‖εB‖

2 and ‖‖εF‖
2, it has been proved that the optimal MVF are those that 

jointly minimize‖‖εB‖
2 + ‖εF‖

2 + <εB,εF>.  It is interesting to notice that this criterion 
involves the computation of norms and correlations. 

6.3. Sub-pixel accuracy 

The sub-pixel accuracy refers to displacements that do not correspond to integer 
pixel positions on the original grid of the images. The need to estimate finer 
displacements can be understood from the simple example in Figure 18. The 



horizontal dimension on the image plane is orthogonal to the drawing plane. We 
assume that the motion vector from image k to k+2 in the position (n,m), referred 
to as v(n,m), is estimated as (0,-3), i.e. three pixels downward. Assuming a 
uniform motion in the corresponding time interval, one would infer a 
displacement of 1.5 pixels downward from frame k to frame k+1. 

 

Figure 18. A schematic representation of the sub-pixel motion.  

The estimation of motion vectors with fractional pixel accuracy is possible and it is 
especially implemented in block matching algorithms. We describe below the 
method in the case of half-pixel accuracy, but it is easy to generalize it to other 
precisions (1/3, 1/4, 1/8 and so on). For a better understanding, the method is 
illustrated in Figure 19. 

 

 

Figure 19 - Half-pel accuracy motion estimation: the red position on the 

integer grid is the currently estimated motion vector, the white pixels are its 

neighbours on the integer grid, the eight green positions on the half-pel 

accuracy grid have to be tested. 

Once the best fitting for integer pixel accuracy has been found (the red pixel in 
Figure 18), one has to consider all the candidates at fractional positions (i,j) (in 
green) and to test the same criterion J(i,j)  (MAE or MSE). The vector minimizing 
the criterion J(i,j) among these positions is the new motion vector, having 
fractional values. Of course, the difficulty consists in the fact that for testing the 

n 

m k 

v(n,m)= 
(0,-3) 

k k+1 k+2 



matching criterion, we do not dispose of image values at half-pel positions. They 
have to be interpolated from existing values. A common method used for this 
operation is the bilinear interpolation, but longer filters can be used for the 
interpolation.  

Let us briefly remind the principle of the bilinear interpolation, with reference to 
Figure 20. 

 

a 
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Figure 20 - Bilinear interpolation: white pixels are on the integer grid, red 

value has to be interpolated. 

If x, y, z, w are the intensity values of the neighbors situated on the integer grid 
(consider the distance between them equal to 1) and the point to be interpolated 
has the distance a to the left-hand side neighbors and b to the upper neighbors, 
then the value M obtained with bilinear interpolation will be: 

wabzabybaxbaM  )1()1()1)(1(  . (65) 

In particular, for half-pel accuracy, a=b=1/2 and then M = (x+y+z+w)/4. 

The concept of generalized interpolation is introduced in (Lakshman, Schwarz,  Blu 
et al., 2011). A combination of short Infinite Impulse Response (IIR) and Finite 
Impulse Response (FIR) filters is used, which provides greater design flexibility and 
better coding performance. An hardware-friendly multiplication-less 
implementation is also described. 

Sub-pixel motion estimation and compensation has been integrated in early video 
coding standards, and has been improved since then. In MPEG-1 and MPEG-2 a 
simple bilinear interpolation allowed half-pixel motion precision. In MPEG-4 Part 2 
an eight-tap filter is used to compute the interpolated samples.  

In H.264/AVC (Wiegand, Sullivan, Bjontegaard et al., 2003), a quarter-pixel 
accuracy is allowed for motion vectors. A six-taps filter is used to generate half-
pixel samples. These values are then rounded to integer values, on which a 
bilinear filter is performed to produce quarter-pixel samples.  

HEVC (Ohm and Sullivan, 2013) further improves the interpolation filters used for 
fractional ME. An eight-tap filter is used to generate half-pixel samples and a 



seven-taps one is used for quarter-pixel samples. HEVC takes benefit both from 
longer filters and from not having intermediate rounding operations. 

6.4. Variable-size block matching 

One severe limitation of block matching motion estimation algorithms is that a 
single translational motion vector is assigned to all pixels within a block. However, 
the underlying assumption that the whole block is undergoing a uniform 
translational motion does not hold in the case of complex scenes with fast moving 
objects. In particular, it leads to a poor prediction along moving edges which 
results in block artifacts in the MC frame and decreased compression 
performance. 

To alleviate this important drawback, variable-size block matching techniques, 
also referred to as multi-grid, have been proposed (Chan, Yu and Constantinides, 
1990), (Dufaux and Moscheni, 1995).  These techniques are based on the 
observation that large blocks are sufficient in uniform areas, whereas finer blocks 
are necessary in highly textured regions or near moving object edges. 
Straightforwardly, in variable-size block matching techniques, the size of blocks is 
adapted based on local texture and motion characteristics.  

In practice, variable-size block matching techniques essentially proceed as follows. 
Block matching is first performed on a coarse grid. Then, selected blocks are split. 
For instance, this decision can be based on a simple threshold on the SAD or SSD 
of the block, to identify blocks where motion estimation has failed. Each of the 
new sub-blocks is assigned the motion vector of the parent block, and block 
matching is then performed again on these sub-blocks. Note that a smaller search 
window is most often used at this stage, as an initial estimate of the motion 
vector is already available. The process is iterated until a minimum block size is 
reached. At each step of the iterative process, selected blocks are most commonly 
divided into two or four sub-blocks, resulting in a binary- or quad-tree 
representation. This segmentation information can thus be efficiently 
represented. An example of the grid resulting from this process is shown in Figure 
21. Clearly, large blocks are used in uniform areas, whereas small blocks have 
been preferred in detailed areas. 



 

Figure 21 - Example of final grid using variable-size block matching. 

The projection of the motion vector obtained at a coarse grid to a finer one should 
have two objectives. Firstly, the projection operator should avoid the propagation 
into finer levels of erroneous motion vector estimates due to large block sizes. 
Secondly, it should guarantee the smoothness of the motion vector field. Simply 
duplicating the parent vector may not be optimal. A bilinear interpolation is also 
possible. It typically leads to smoother motion fields; however it does not ensure 
motion consistency along moving object boundaries. A better approach is to 
select the best initial condition among motion vectors in a neighborhood, as 
proposed in (Dufaux and Moscheni, 1995).  

Regarding the splitting criterion, in the context of video coding, a more 
appropriate and sophisticate algorithm is to optimize the decision in a rate-
distortion sense. More precisely, in this way, the gain of a more accurate motion 
precision, leading to a reduced residual signal, is weighted against the cost of 
extra motion vectors to be transmitted. See Sec. 9.1.3 for a more detailed 
discussion on rate-distortion optimization. 

A simple form of variable-size block matching is supported in H.264/AVC 
(Wiegand, Sullivan, Bjontegaard and Luthra, 2003) and HEVC (Ohm and Sullivan, 
2013), as described in more details in Sec. 9.1.  

Efficient hardware implementations of variable-size block matching have been 
proposed. In (Yap and McCanny, 2004), a one-dimensional very large-scale 
integration architecture is introduced for full-search variable-size block matching. 
The SAD of a larger block is efficiently computed by re-using the results previously 
obtained for smaller sub-blocks. In (Chen, Chien, Huang et al., 2006), the impact of 
variable-size block matching in hardware architectures is first analyzed, and two 
new hardware architectures are then proposed. 



Finally, variable-size or multi-grid block matching techniques can efficiently be 
combined with multi-resolution approaches, as described in Sec. 7.2. in order to 
further improve performance. 

7 Parametric motion estimation 

In this section, we consider motion estimation approaches which estimate the 
parameters of the motion models as defined in Sec. 2.3.2, and more specifically in 
Eqs. (10) to (16). As previously discussed, these models can be applied to a 
coherently moving region of support.  

An important special case is when a single region of support corresponding to the 
whole image is selected. In this case, referred to as global motion estimation, the 
dominant motion is estimated. This dominant motion is resulting from camera 
motion, such as dolly, track, boom, pan, tilt and roll, which is a widely used 
cinematic technique in filmmaking and video production. 

Hereafter, we describe two classes of techniques for parametric motion 
estimation. We also discuss difficulties arising due to outliers, and related robust 
estimators.  

7.1. Indirect parametric motion estimation 

A first class of approaches indirectly computes the motion parameters from a 
dense motion field rather than from the image pixels. More specifically, a dense 
motion field is first estimated, and then the parametric motion model is fitted on 
the obtained motion vectors.  

A Least Mean Square (LMS) technique is commonly used for this model fitting. 
More specifically, the motion parameters are derived from the expressions  
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where u(x,y) and v(x,y) denote the horizontal and vertical components of the 

dense motion field, ),(ˆ yxu and ),(ˆ yxv  the corresponding fully parameterized 

motion field, π={ π1, π2, ..., πn} the set of parameters of the model (see Sec. 2.3.2), 

and  the support region for model fitting.  The model parameters π can then be 
computed by setting to zero the partial derivatives of Eq. (66) according to π1, π2, 
..., πn. 

In (Adiv, 1985) and (Wang and Adelson, 1994), the initial dense motion field is 
estimated using a gradient-based optical flow approach (see Sec. 3). An LMS 



technique is then used to compute the model parameters. The methods in 
(Pardas, Salembier and Gonzalez, 1994) and (Tse and Baker, 1991) are similar, 
however, a block matching technique (see Sec. 6) is rather used in the first step. 

A drawback of these approaches is that the performance is significantly influenced 
by the accuracy of the initial dense motion field. Indeed, LMS is very sensitive to 
erroneous samples, which may negatively impact the model parameters 
estimation. Another weakness is that the region of support is assumed to be 
characterized by a coherent motion which can be closely represented by the 
motion model. However, this strong assumption may not always hold. To alleviate 
these two drawbacks, robust estimation can be used, as further discussed in Sec. 
7.3. 

The same framework can also be used to estimate a parametric motion model in 
the compressed domain. In this case, block-based motion vectors are readily 
available from the compressed code stream. Such an approach is proposed in 
(Smolic, Hoeynck and Ohm, 2000) for a low complexity global motion estimation. 
To take into account the high likelihood of outliers, a robust M-estimator is used. 
A similar compressed domain scheme is proposed in (Tok, Glantz, Arvanitidou et 
al., 2010), relying on the Helmholtz tradeoff estimator as a robust estimator. 

7.2. Direct parametric motion estimation 

A second class of approaches directly computes the model parameters.  

Based on the optical flow equation (see Sec. 2.3.1), a gradient-based formulation 
similar to the dense optical flow approaches is followed. However, as discussed in 
Sec. 3, the optical flow equation is underconstrained. Thus, an additional 
constraint is required, namely a smoothness constraint (Horn-Schunck) or a local 
uniformity constraint (Lucas-Kanade). When including a motion model, the 
problem becomes implicitly constrained.  

More specifically, a parametric gradient-based formulation of the optimization 
criterion is given by 
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where ),(ˆ yxu and ),(ˆ yxv  are the fully parameterized motion field, π={ π1, π2, 

..., πn} the set of parameters of the model (see Sec. 2.3.2), and  the support 
region.  By taking the partial derivatives of Eq. (67) according to the parameters 
π1, π2, ..., πn, and setting to zero, the parameters of the motion model can then be 
derived. 

The above formulation uses the optical flow equation, which is based on a first 
order Taylor series expansion (see Sec. 2.3.1), and is adopted in (Anandan, 



Bergen, Hanna et al., 1993). However, the first order expansion implicitly assumes 
that the velocity remains small. As an alternative, a second order Taylor series 
expansion is preferred in (Hoetter and Thoma, 1988) and (Wu, S.F.; Kittler, 1990). 
In order to improve robustness, especially when estimating the gradient which is 
prone to noise, hierarchical schemes are used. More specifically, the process is 
iterated on a multi-resolution representation by means of a Gauss-Newton 
minimization algorithm.  

A different formulation is proposed in (Szeliski, and Coughlan, 1994) and (Dufaux 
and Konrad, 2000), where the Sum of Squared Difference  between the current 
frame and the motion compensated previous frame is directly minimized: 
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with 
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The motion parameters π={ π1, π2, ..., πn} are computed by minimizing Eq. (68) 
using the Levenberg-Marquardt iterative non-linear minimization (Press, Flannery, 
Teukolsky et al., 1988). More specifically, the following expression is obtained 
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where δπl is the parameter update term 
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the curvature matrix Hk,l (equal to one-half the Hessian matrix) is defined as 
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and 
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The Eq. (70) is solved by Singular Value Decomposition (SVD) (Press, Flannery, 
Teukolsky et al., 1988) and the process is iterated in a multi-resolution data 
representation.  In (Dufaux and Konrad, 2000), an initial matching step is included 
in order to find a good initial condition. Moreover, a truncated quadratic function 
is used in order to increase robustness to outliers. 

As an alternative to the above gradient-based approaches, a generalized matching 
technique is proposed in (Moscheni, Dufaux and Kunt, 1995). More specifically, 



the model parameters are computed by minimizing a dissimilarity measure. The 
technique is robust, as it does not rely on a model of the luminance. However, it 
entails a large computational complexity. 

7.3. Robust estimation 

Outliers are samples that markedly deviate from the prevailing tendency. In the 
case of parametric motion estimation, the presence of outliers, due to noisy 
measurements or poorly defined support regions, will lead to inaccurate model 
estimates. In the case of global motion estimation, foreground moving objects 
also correspond to outliers. 

In order to alleviate the impact of outliers, robust estimation has been proposed 
(Rosseeuw and Leroy, 1987), (Meer, Mintz, Rosenfeld et al., 1991). One indicator 
of the performance of a robust estimator is its breakdown point, roughly defined 
as the highest percentage of outliers that the robust estimator can tolerate. 

Three classes of robust estimators can be defined: 

 M-estimators: M-estimators are a generalization of maximum likelihood 
estimators. They involve the minimization of a function of the form: 


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ir )(  , (74) 

where ri is the residual error between a data sample and its fitted value, 
and ρ is a symmetric positive-definite function with a unique minimum at 
ρ(x=0). With a squared error function, ρ(x)=x2, the rate of increase 
accelerates for large values of x, giving a very large weight to these values. 
Conversely, for a robust estimator, the function ρ saturates at large values 
of x. 

 L-estimators: L-estimators are linear combination of order statistics. Two 
examples are the median and the α-trimmed-mean. 

 R-estimators: R-estimators are based on rank tests. 

Robust estimators have been successfully used in motion estimation. Two robust 
estimators, the Least Median of Squares (LMedS) and the Least-Trimmed Squares 
(LTS), are used in (Ayer, Schroeter and Bigün, 1994). Tukey's biweight function 
(Press, Flannery, Teukolsky et al., 1988) is applied in an iterative re-weighting 
scheme in (Odobez and Bouthemy, 1995) and (Smolic, Hoeynck and Ohm, 2000). 
A truncated quadratic function is minimized in (Dufaux and Konrad, 2000). Finally, 
the Helmholtz tradeoff estimator is applied in (Tok, Glantz, Arvanitidou et al., 
2010). 



8 Multi-resolution approaches 

Multi-resolution or multi-scale approaches are often used in image and video 
processing. They have their origin in the Laplacian pyramid introduced in (Burt 
and Adelson, 1983).  

A low-pass pyramid is a set of images with progressively more smoothing and 
reduced spatial resolution. A smoothing filter is first applied on the original image. 
This smoothed image is then subsampled, most commonly by a factor of two in 
both the horizontal and vertical directions (in this case, it is referred to as a dyadic 
structure). The same filtering and subsampling operations are then applied again 
on the resulting image, in a recursive way. Different smoothing kernels can be 
used. The concept of low-pass pyramid is illustrated in Figure 22.  

 

 

 

Figure 22 - Example of low-pass pyramid (3 levels). 



A multi-resolution and multi-scale representation is commonly used, as illustrated 
at the top of Figure 23. However, a dual representation at multi-resolution but a 
single scale is also possible, as shown at the bottom of Figure 23. These dual 
representations are equivalent, as the second one can be derived from the first 
one by upsampling and interpolation, and vice versa, the first one can be obtained 
from the second one by filtering and downsampling.  

 

 Figure 23 - Duality between multiple scales (top) and single scale (bottom)  

for multi-resolution representation. 

In the context of motion estimation, such a multi-resolution or multi-scale 
representation is very appealing. Thank to the smoothing and spatial subsampling, 
coarse resolution levels allow to efficiently and robustly estimate large scale 
motions. Conversely, fine local motions can accurately be estimated at finer 
resolution levels. An additional advantage of multi-resolution motion estimation 
techniques is the potentially significant reduction in computational complexity. 

Thanks to these appealing advantages, multi-resolution has been widely adopted 
for motion estimation. Multi-resolution optical flow methods have been proposed 
in (Burt, Yen and Xu, 1983), (Glazer, 1984) and (Enkelmann, 1988). Similarly, multi-
resolution block matching techniques have been introduced in (Anandan, 1987), 
(Bieling, 1988) and (Dufaux and Moscheni, 1995). In turn, multi-resolution 
parametric techniques have been proposed in (Black and Anandan, 1996) and 
(Dufaux and Konrad, 2000). 

Most algorithms follow a coarse-to-fine processing. More specifically, motion is 
first estimated at the coarsest resolution level. As coarse resolution input images 



are obtained by low-pass filtering and subsampling, noise is largely smoothed out 
and large-range interactions can be efficiently taken into account. Hence, a robust 
estimation is obtained, which captures the large trends in motion. The motion 
field is then projected to the next finer resolution level and iteratively refined. 
This refinement allows to consider short-range relations and hence to identify 
local motions and improve accuracy. As a result, a more reliable motion vector 
field is obtained, with coherent displacements from one scale to the next. 

Multi-resolution block matching motion estimation, as proposed in (Anandan, 
1987) and (Bieling, 1988), is illustrated in Figure 24 and described in more details. 
The motivation is to overcome the limitations of block matching techniques, and 
in particular to reduce blocking artifacts in the motion compensated frame. Block 
matching is first estimated on a low-pass and subsampled version of the original 
images, either by full-search or using some fast search techniques (see Sec. 6.1). 
Thanks to the spatial subsampling, large displacements can efficiently be 
estimated with a small search window. These motion vectors are then projected 
on the finer resolution level. If the same block size is used at both resolution 
levels, a parent block at the coarser level will be projected into four children 
blocks at the finer level. A simple projection operator is to have these four 
children blocks inherit the same motion vector of the parent block. 
Straightforwardly, its amplitude has to be multiplied by two in each direction to 
take into account the difference of scale. Note that it is also possible to select the 
best initial condition among motion vectors in a neighborhood, as discussed for 
variable-block size block matching in Sec. 6.4. The motion vectors are then refined 
at the finer scale. At this stage, a reduced-size search window around the current 
estimate can be used in order to guarantee smoothly varying motion vector fields.  
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Figure 24 - Hierarchical motion estimation with refinement at high resolution. 



While most proposed multi-resolution approaches follow the coarse-to-fine 
processing described above, some techniques have also been proposed which 
includes fine-to-coarse steps. More specifically, in (Enkelmann, 1988), a strategy is 
described which returns to coarser resolution levels when the current estimate is 
unreliable. In (Dufaux, Moccagatta, Rouchouze et al., 1993), a multigrid block 
matching technique is described, which combines coarse-to-fine and fine-to-
coarse steps in order to avoid local minima. Finally, an optical flow multigrid 
algorithm which passes flow estimates both up and down the multi-resolution 
levels is proposed in (Bruhn, Weickert, Kohlberger et al., 2006). 

It can be straightforwardly observed that a multi-resolution block matching 
technique, combined with a spatially adaptive grid size, is essentially equivalent to 
the variable-size block matching described in Sec. 6.4. 

In summary, multi-resolution or multi-scale motion estimation approaches are 
very appealing, as they result in more robust and accurate motion vector fields. 
Moreover, this performance gain is obtained with a reduced computational 
complexity. However, a drawback of many approaches is that the obtained 
motion field is overly smooth and sometimes fails to accurately represent detailed 
structures and small moving objects. 

9 Motion compensation 

Motion compensation (MC) is used together with motion estimation (ME) to 
perform temporal predictions in the context of video compression. This approach 
is so effective that virtually all compression standards resort to it in order to 
remove the temporal redundancy from video.  

Predictive coding consists in computing a prediction of the input signal, and in 
compressing the prediction error (or residual) instead of the signal itself. If the 
signal is sufficiently correlated and the prediction is computed in such a way that 
it could be perfectly reproduced at the decoder side, this predictive coding is 
more effective than coding the original signal. 

Video sequences show a very high temporal correlation, since consecutive images 
are very similar, and mainly differ for the movement. Therefore a motion 
compensated temporal prediction is generally very effective, i.e. it produces a 
low-energy residual. Frames in which blocks can be temporally predicted are 
called P-frames.    

In video compression, the coding unit is typically a block of pixels. The current 
terminology for ME/MC is macroblock, since the term block was reserved for the 
unit of the spatial transform. However in the upcoming standard HEVC the 
terminology is clarified since the terms coding unit, prediction unit and transform 
unit are explicitly introduced. We give some details about HEVC ME/MC in Sec. 
9.1.4, and until then we will keep using the terms block and macroblock. 



 

Figure 25 - Motion compensated version of the reference image and the 

associated prediction error. 

The motion compensation consists simply in using the block from the reference 

image in position )ˆ,ˆ( jqip    as prediction of the block of the current image in 

position (p,q), where )ˆ,ˆ( ji  is the vector estimated for the position (p,q). 

Therefore, instead of encoding the luminance values fk(Bp,q), we have to encode 
fk(Bp,q) - fh(Bp-î,q-ĵ). In Figure 25 (left) we show the motion compensated prediction 
of image 227 from the flower sequence (Figure 15, right), produced by using the 
motion vector field shown in Figure 16 (left) on the reference image (image 223, 
Figure 15, left). 

We observe that the prediction is good almost everywhere, except for the blocks 
that where disoccluded in the current image (i.e. appeared from behind the tree), 
and for those that entered the scene from the right. In order to mitigate this kind 
of problem, bi-directional motion-compensated prediction has been introduced 
since the first video coding standards as MPEG-1: the block belonging to some 
images (called B-frames) can be predicted not only with blocks from a previous 
image, but also with blocks from a successive one. Moreover, the prediction can 
also consist in the average of the two blocks.         

We also remark that even with B frames, nothing assures that a good prediction 
exist in the reference frames; for this reason video standards do not oblige the 
encoder to use the motion compensated prediction: sometimes is more effective 
to encode the new block instead of a large prediction error. This choice is up to 
the encoder. 

9.1. Motion compensation in H.264/AVC 

In H.264/AVC (Wiegand, Sullivan, Bjontegaard et al., 2003) the motion 
compensation is very effective thanks to several new tools. The most relevant are 
described in the following. In particular H.264/AVC uses variable block sizes for 
ME/MC, multiple references and quarter pixel ME precision. 



9.1.1. Macroblocks and partitions 

The coding unit in H.264/AVC is the macroblock (MB), i.e. a square block of 16 x 
16 luminance values, plus the co-located chrominance values. For the sake of 
simplicity, in the following we will consider only the luminance. 

A MB can be coded in several different ways, called modes. Motion compensation 
is used in temporal predictive modes, which differ in the partition of the MB. In 
the 16 x 16 mode, a single motion vector is estimated for the whole MB, and the 
prediction is the corresponding block of pixels in the reference frame. In the other 
modes, the MB is divided into rectangular or square parts, and for each one a 
different motion vector can be encoded. Therefore the predictor of the current 
MB can be formed by joining blocks from different regions of the reference frame. 
This allows dealing successfully with blocks where several objects are present. In 
particular, the MB can be divided into two identical horizontal or vertical 
rectangles, or into four 8 x 8 blocks. In this case, each of the blocks can undergo a 
further partition, as shown in the bottom row of Figure 26. In conclusion, for a 
single temporal predictive MB H.264/AVC allows to encode from one to sixteen 
motion vectors. In general one can expect that a finer partition gives a better 
predictor, but this comes at the cost of a higher coding rate for motion.   

 

Figure 26 - H.264/AVC macroblock partitions. First row, from left to right: 16 

x 16, 16 x 8, 8 x 16, 8 x 8. If this last partition is selected, each 8 x 8 block can 

be further partitioned into 8 x 4, 4 x 8 or 4 x 4  sub-blocks. 

9.1.2. Multiple references and generalized P/B frames 

As in previous standards, H.264/AVC allows for mono-directional and bi-
directional prediction. However, in H.264/AVC the motion compensation is much 
more flexible than in the past. 



In the case of mono-directional prediction, there is a list of up to 16 images: a MB 
can be predicted using any reference image in the list: therefore the encoder 
should write in the encoded bitstream not only the selected motion vector, but 
also the reference index in the list. Therefore, two macroblocks in the same image 
can be predicted using blocks that belong to different references, as shown in 
Figure 27. Likewise, in the case of bi-directional prediction, two lists are kept. A 
MB can be predicted with blocks from any image in any list, or as a linear 
combination of a block from the first list and a block from the second one.  

 

 

Figure 27 - Multiple references in H.264/AVC. 

9.1.3. Rate-constraint Lagrangian motion estimation 

In this section we describe a non-normative tool for efficient motion estimation in 
H.264/AVC, referred to as rate-distortion optimization (RDO) (Wiegand, Schwarz, 
Joch et al., 2003).  

In order to achieve the best possible RD performances, each single decision of the 
encoder should be taken considering the effect on the final image quality and 
coding rate, and then solving a constrained optimization problem: typically, the 
problem is the one of minimizing the distortion with a constraint on the rate. This 
problem can be solved with a Lagrangian approach. More precisely, given a 
candidate vector (i,j), we could perform a complete encoding/decoding process, 
evaluating the resulting distortion and the coding rate. More precisely, we could 
compute the motion-compensated residual, then perform the spatial transform, 
the quantization, the inverse transform and we could add again the prediction, 
obtaining the decoded macroblock associated to the candidate vector. The 
resulting distortion would be used as D(i,j). At the same time, we could compute 
the coding rate as the sum of the rates needed to encode the motion vector, the 
reference image index if multiple references are possible, and the quantized 



residual. This would give R(i,j). Finally, the best vector would be the one 
minimizing 

),(),(),( jiRjiDjiJRDO   . (75) 

However, this approach is unfeasible in practice, since it would impose an 
extremely high complexity: each MB is encoded with each possible candidate 
vector. In practice, a good approximation of Eq. (75) is the following: 

),(),(),( jiRjiJjiJ MotionMESADMERDO   . (76) 

In other words we use a regularized version of the SAD criterion of Eq. (58), where 
the regularization function is the rate needed to encode the motion vector. 

Finally, let us spend a few words about how the encoder can perform an RD-
optimized selection of the MB partition. Since the number of partitions is 
relatively limited, in this case the encoder can actually use the criterion defined by 
Eq. (75). For each partition, and for each sub-block of the partition, the 
contributions to the total distortion and rate are computed and summed up. The 
mode providing the smallest total cost can be selected as the optimal encoding 
mode. 

9.1.4. Preview of forthcoming HEVC 

In the forthcoming High Efficiency Video Coding standard (Sullivan, Ohm, Han et 
al., 2012), (Ohm and Sullivan, 2013), ME/MC with variable block size is further 
enhanced with respect to H.264/AVC. More precisely, blocks sizes range from 64 x 
64 to 4 x 4. The temporal prediction is performed within a so called prediction unit 
that in turn can be split into one, two or four prediction blocks (PBs). As in 
H.264/AVC, a block can be split into two rectangular blocks, but four new split are 
possible in HEVC, in which the two rectangular blocks do not have the same 
number of pixels: these splits are known as asymmetrical mode partitions. The 
possible splits of a block into PBs are shown in Figure 28. The asymmetrical 
partitions have size M x M/4 or M x 3M/4.    

 



Figure 28 - HEVC partition types for ME/MC. Top row: symmetrical 

partitions. Bottom row: asymmetrical partitions. 

9.2. Overlapped Block Motion Compensation 

When one applies motion compensation on an image using a motion vector field 
produced with block matching, the resulting image can be affected by blocking 
artifacts. Motion compensation consist in copying blocks from disparate locations 
in the reference image and in putting them side-by-side: of course, nothing 
assures a smooth transition between them. Therefore unnatural image luminance 
variations appear in correspondence of the block grid, giving rise to annoying 
visual artifacts, as shown for example in Figure 25 (left).  

In order to overcome the block artifacts in the motion-compensated frame, 
Overlapped Block Motion Compensation (OBMC) has been proposed (Nogaki and 
Ohta, 1992). This method simply consists in considering for the computation of 
the motion prediction at the boundaries of a block not only the contribution of 
the estimated block, but also that of neighboring blocks, leading to a prediction by 
a weighted average of these two contributions. A schematic example is shown in 
Figure 29.   

 

 

Figure 29 - Principle of overlapped block motion compensation. Left: we show 

four motion vectors and the blocks they point toward in the reference image. 

Right: after motion compensation, the blocks partially overlap, allowing a 

smooth transition from one block to another. 

An estimation-theoretic analysis of motion compensation is presented in (Orchard 
and Sullivan, 1994). OBMC is formulated as a probabilistic linear estimator of pixel 
intensities, which leads to improved prediction. 



9.3. Global Motion Compensation 

Global Motion Compensation (GMC) is especially suited to encode video content 
with a significant amount of camera motion, such as panning, zooming and tilting. 
In such a case, the coding efficiency of common Local Motion Compensation 
(LMC) decreases. On the one hand, a large number of motion vectors have to be 
transmitted for the moving background. On the other hand, a translational motion 
model may fail in the presence of camera motion including zoom or rotation. GMC 
improves upon LMC by building a prediction using global motion parameters. In 
this way, the dominant motion is accurately represented with very few 
parameters. 

GMC has been standardized in MPEG-4 (Ebrahimi, Dufaux and Nakaya, 2000), 
more precisely in the Advanced Simple Profile. We now describe this scheme in 
more detail. The encoder is illustrated in Figure 30. More precisely, it involves the 
following steps. Both Local Motion Estimation (LME) (i.e. baseline block matching, 
see Sec. 6) and Global Motion Estimation (GME) (see Sec. 7) are performed. Next, 
the encoder selects for each MacroBlock (MB) the best prediction between LMC 
and GMC. Global motion parameters are encoded and transmitted for every 
frame. In addition, motion vectors are transmitted for every MB encoded using 
LMC. 
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Figure 30 - MPEG-4 GMC encoder. 

The LMC - GMC decision is not normative. In the MPEG-4 Verification Model 
(MPEG-4 Video Verification Model, 1998), the following test is used 

LMC useotherwise

GMCuse),,((if LMCyxpGMC SADMVMVQPSAD 
 , (77) 



where SADGMC (respectively SADLMC) is the sum of absolute difference between the 
original MB and the GMC prediction (respectively the LMC prediction), Qp is the 
quantization parameter, and (MVx, MVy) is the motion vector obtained by LME. 

The term ),,( yxp MVMVQP  is defined as 
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with NB the number of non-transparent pixels in the macroblock (MPEG-4 
supports object-based video coding with arbitrary-shape objects), and δ(MVx, 
MVy)=1 when (MVx, MVy)=(0,0) and 0 otherwise. The purpose of this term is to 
give an edge to GMC, especially when Qp is large (i.e. at low bit rate). It is 
motivated by the two following observations. Firstly, the gain brought by GMC is 
in large part due to a reduced amount of overhead motion information since no 
motion vector is transmitted for MB encoded using the GMC mode. Secondly, the 
gain resulting from GMC increases at very low bit rates, as in this case the bit rate 
to transmit motion vectors becomes a larger percentage of the overall bit rate.  

The global motion parameters have to be transmitted to the decoder. For this 
purpose, instead of directly transmitting the parameters of the motion model, 
displacement of n reference points are encoded, with n=1,…,N. More precisely, 
reference points (in, jn) are positioned at the corners of the current frame (or the 
bounding box in the case of an arbitrary-shape object), and the corresponding 
points (i'n, j'n)  are computed in the reference frame using the global motion 
parameters, as shown in Figure 31. Next, the coordinates (i'n, j'n)  are quantized to 
half-pel precision. Finally, the vectors (un, vn)=( in - i'n, jn - j'n) are computed and 
transmitted as differential motion vectors. Four motion models are considered: 
perspective model where N=4 pixels are enough to estimate the model 
parameters, affine (N=3), translation - isotropic magnification - rotation (N=2) and 
translation (N=1).  
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Figure 31 - Trajectories encoding. 

Similar to the GMC in MPEG-4, a two-stage motion compensation for H.263 was 
introduced in (Jozawa, Kamikura, Sagata et al., 1997). First, GMC is applied to the 
reference frame, giving a new GMC reference. Next, LMC is performed twice: on 
the GMC reference and on the regular reference. The best prediction is then 
selected. 

The scheme in (Wiegand, Steinbach and Girod, 2005) combines affine MC with 
long-term memory MC prediction. Several sets of affine parameters are estimated 
for sub-regions of the image. Then, for each affine set, the reference picture is 
warped and added in the long-term memory buffer. Conventional block-based ME 
and MC is then carried out using all the available reference pictures, and RDO is 
used for optimal mode selection.In (Glantz, Krutz and Sikora, 2010), a new 
prediction mode is proposed which combines GMC and temporal filtering of the 
previously decoded pictures. A rate-distortion optimization is applied on each 
macroblock to decide whether to use this new prediction mode. The technique is 
integrated in H.264/AVC, showing improved coding performance.  

Exploiting global motion information, an adaptive temporal filter is proposed in 
(Krutz, Glantz, Tok et al., 2012), as a post-processing for HEVC. 

One of the major drawbacks of GMC is an increased computational complexity 
both at the encoder and decoder sides. The gain achieved straightforwardly 
depends on the type of motion in the sequence.  

9.4. Sprites 

A sprite, also known as mosaic or panoramic image, refers to a large composite 
image obtained by aligning and blending pixels from different video frames, see 
(Teodosio and Bender, 1993), (Irani, Anandan, Hsu, 1995) and (Szeliski, 1996). In 



the presence of significant camera motion, a sprite can often reconstruct a large 
panoramic view of the background of the scene by estimating global motion (see 
Sec. 7). This sprite efficiently captures temporal information, resulting in a very 
compact representation. 

As an alternative to GMC, but with a similar objective, sprite coding as been 
proposed as an efficient way to represent a video sequence (Irani, Hsu and 
Anandan, 1995), (Dufaux and Moscheni, 1996), (Lee, Chen, Lin et al., 1997). Sprite 
coding has been standardized in MPEG-4 (Ebrahimi, Dufaux and Nakaya, 2000). 

The sprite has typically to be generated off-line, prior to sprite coding. The process 
is illustrated in Figure 32. Global motion estimation is first performed. Techniques 
such as those presented in Sec. 7 can be used, usually with a translational, affine 
or perspective model. Warping (Wolberg, 1990) is then used to align pixels of the 
current video frame with the background sprite. Finally, the aligned frames are 
blended and accumulated in the sprite. Note that the sprite is constructed for a 
region characterized by a coherent motion. This may require a segmentation step, 
for instance to indentify background and foreground regions. 
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Figure 32 - Sprite generation process. 

The sprite is in fact a large still image with an associated segmentation mask. In 
MPEG-4 terminology, it is referred to as a Video Object Plan (VOP) (Ebrahimi, 
Dufaux and Nakaya, 2000). Its texture and shape can efficiently be encoded using 
an Intra coding technique. It is then sufficient to transmit the sprite, along with 
the warping parameters, resulting in a very compact representation. At the 
decoder side, frames of the video sequence can be reconstructed using the 
warping parameters and the sprite content. The MPEG-4 sprite encoding and 
decoding is illustrated in Figure 33 (Ebrahimi, Dufaux and Nakaya, 2000). 



Trajectories are encoded in the same way as for the GMC technique in MPEG-4 
(see Sec. 9.3). 
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Figure 33 - Sprite coding in MPEG-4. 

In (Dufaux and Moscheni, 1996), the sprite is dynamically build and used in a 
motion compensated predictive scheme. In order to improve the sprite 
generation process, a new blending technique is introduced in (Lu, Gao and Wu, 
2003), based on the region reliability. Furthermore, an arbitrary-shape spatial 
prediction method is proposed to increase the coding performance. A scheme 
combining sprite coding with automatic background subtraction and H.264/AVC is 
presented in (Krutz, Glantz, Frater et al., 2011). A rate-distortion optimization 
technique is also introduced. A long-term global motion estimation technique is 
proposed in (Smolic, Sikora and Ohm, 1999), using a closed-loop prediction to 
avoid accumulation of errors, which is especially fitted for sprite coding. An 
overview of sprite generation and coding is presented in (Farin, Haller, Krutz et al.,  
2008), along with some recent developments.  

Sprite coding can efficiently encode synthetic graphic objects. In the case of 
natural video, the sprite has to be constructed off-line prior to coding. Therefore, 
it makes the approach unsuitable for real-time applications. Moreover, sprite 
coding is only fitting for a video object whose motion can be approximated by a 
rigid 2-D model. However, this assumption very often holds true for the 
background.  

10 Performance assessment criteria for motion 
estimation algorithms 

It is quite difficult to assess the performances of a motion estimation algorithm 
without including it in a specific application. As we have previously discussed, 
different properties are desirable when considering image sequence analysis or 
video coding.  

In the context of image sequence analysis, the ability to provide a very accurate 
motion vector field is primordial, even though the resulting field is dense and 



more costly to encode. Tests can be set up, implementing artificial motions, in 
order to check the performance of the algorithm by comparing true and 
estimated motion vector fields. 

When considering video coding, the primary objective is to achieve optimal rate-
distortion coding performance. In this case, the ability to reliably estimate the 
motion present in the scene remains a secondary goal.  

10.1. Assessment of optical flow techniques 

A quantitative assessment is introduced in (Barron, Fleet and Beauchemin, 1994), 
along with a comparative analysis of several optical flow motion estimation 
algorithms. However, a very limited data set is used.  

More recently, an evaluation methodology is introduced in (Baker, S. Scharstein, 
D.  Lewis, J.P. et al., 2011). The first step is to collect a ground-truth data set. A key 
difficulty is to be able to derive ground-truth for the optical flow. In order to cover 
a broad range of content and varying characteristics, four types of video data are 
considered: 

 Real imagery of non-rigidly moving scene: Test video sequences are 
captured in visible light. In parallel, a dense optical flow ground-truth is 
captured in UV light using hidden fluorescent painted texture. 

 Realistic synthetic imagery: Synthetic sequences are useful, as the motion 
can be precisely determined. Synthetic sequences obtained by rendering 
complex scenes with varying amount of motion, realistic textures, and 
occlusions are considered. 

 Imagery for frame interpolation: Test sequences are temporally 
decimated. The temporally up-converted sequences obtained by frame 
interpolation can then be compared to the corresponding original 
sequences. In other words, instead of directly comparing the precision of 
the obtained motion vectors with a ground-truth field, it is proposed to 
evaluate the ability of the optical flow to provide an accurate motion-
compensated interpolated frame, which may be more important in many 
application scenarios (Szeliski, 1999). 

 Real stereo imagery of rigid scenes: Dense disparity ground-truth is 
captured for pairs of stereo images, using structured light (Scharstein and 
Szeliski, 2003). 

This test data set is publicly available at http://vision.middlebury.edu/flow/.  

We now discuss the methodology and measures used to assess performance. The 
Angular Error (AE) is often used to compare estimated and ground-truth flows. Let 



us define (uGT,vGT) the ground-truth optical flow, and (u,v) the estimated one. AE is 
then defined as 
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The denominator has for purpose to avoid a divide by zero in case of a null motion 
vector. However, it has for consequence to arbitrarily weight differently errors 
depending on the amplitude of the motion vector. 

Avoiding this shortcoming, and thus probably more appropriate, the Error in flow 
Endpoint (EE) is defined as 

22 )()(EE GTGT vvuu   . (80) 

When considering the frame interpolation scenario, the Interpolation Error (IE) is 

defined as the RMS difference between the ground-truth image, ),( yxfGT , and 

the motion compensated interpolated one ),(ˆ yxf , 

  
2

),(),(ˆ
1

IE yxfyxf
N

GT  . (81) 

Alternatively, a gradient-normalized RMS is used in the Normalized interpolation 
Error (NE), 
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To take into account the observation that optical flow estimation is harder in 
some regions of the image, error measure statistics are computed over three 
types of regions: around motion discontinuities, in texture-less regions, and over 
the whole image. 

This evaluation methodology has been widely used by other researchers in the 
field, who frequently use the publicly available data set to report the performance 
of their algorithm. Many researchers have also uploaded their results to the 
website. 

10.2. Assessment of motion estimation for video coding 

In the context of video coding, the quality of the estimated motion field can be 
evaluated, similarly to Sec. 10.1, in order to assess the ability of the method to 
estimate the true motion in the scene. In particular, smooth motion vector fields 
are desired in order to prevent artificial discontinuities in the DFD and to reduce 



the overhead needed to transmit the motion information. A second measure of 
the quality of the motion estimation algorithm is the energy of the DFD, giving 
insight about the quality of the prediction.  

However, a more relevant criterion to evaluate a motion estimation algorithm is 
to consider the global rate-distortion performance when it is used in a given video 
coding scheme. More specifically, the following aspects have to be considered: 

 Objective quality metric: In order to assess the rate-distortion 
performance of a video coding scheme, the distortion, or equivalently the 
quality, of the reconstructed sequence should be estimated. PSNR is the 
most commonly used objective quality metric. It is computed between the 
reconstructed and original sequences, frame by frame, and in a range of 
bit rates of interest. However, it has been well-documented that PSNR is 
not always well correlated with the perceived visual quality (Wang and 
Bovik, 2009). It is largely due to the fact that PSNR totally ignores 
properties of the HVS.  

For this reason, perceptually-driven objective quality metrics have been 
proposed, for instance SSIM (Wang, Bovik, Sheikh et al., 2004), VIF  
(Sheikh and Bovik, 2006) or PSNR-HVS-M (Ponomarenko, Silvestri, 
Egiazarian et al., 2007). These metrics typically achieve better correlation 
with perceived visual quality when compared to PSNR. 

 Subjective quality assessment: Given the limitations of objective quality 
metrics, subjective tests are needed in order to reliably and thoroughly 
assess the visual quality of a video sequence. For this purpose, several 
protocols have been defined, for instance for TV applications (ITU-R 
BT.500-12, 2009) or multimedia applications (ITU-R P.910, 2008).   

In the context of motion estimation, it is in particular key to visually 
inspect the reconstructed video sequence for the presence of distortions 
resulting from failures of the motion estimation technique. 

Moreover, a mismatch between the motion estimation technique and the 
coding strategy is another potential cause of distortions. For instance, 
visible blocking artifacts may be introduced in the case of a block-based 
motion estimation which, when is followed by a wavelet-based coding of 
the residual signal, i.e. a transform involving the entire image, may have a 
worse effect than in the case of an hybrid coding scheme (see also Section 
6.2.4) . 

Note that video coding standards such as H.264/AVC (Wiegand, Sullivan, 
Bjontegaard et al., 2003) or the forthcoming HEVC (Ohm and Sullivan, 2013), only 
specify the minimum requirements to guarantee interoperability. In other words, 
only the syntax and semantic of the code stream, along with the decoding 
process, are normative. Therefore, although the specific motion estimation 



technique used may significantly influence the performance of a video encoder, 
this part of the encoding process is not in the normative scope of the standard. 

11 Summary and concluding remarks 

In this chapter, we have reviewed some of the most important techniques for 
motion estimation. Motion estimation plays an important role in a broad range of 
applications encompassing image sequence analysis, computer vision and video 
communication. As these domains entail different requirements and constraints in 
terms of performance, we have mainly taken here a video coding view point.  

As a preamble, we have first discussed the notion of apparent motion or optical 
flow. We have also introduced different models for motion representation. 

After these preliminaries, we have discussed the main approaches for motion 
estimation: gradient-based techniques solving the optical flow equation, pel-
recursive techniques iteratively minimizing the DFD, transform-domain techniques 
applied on Fourier, DCT or DWT coefficients, block-matching techniques which are 
widely adopted in video coding schemes, and finally parametric techniques to 
estimate the parameters of a motion model.  

As a key component in image and video processing, we then described the 
concept of multi-resolution or multi-scale approaches, which typically leads to 
more accurate and robust motion vector field, along with reduced computation 
complexity.  

Next, given our emphasis on video coding applications, we explained in more 
details different methods for motion compensation, including a more thorough 
description of the various modes enabled in the state-of-the-art H.264/AVC video 
coding standard. 

To complete the chapter, we finally discussed methodologies to effectively assess 
the performance of motion estimation algorithms.   

Motion estimation is a complex subject. In this chapter, we have aimed at a broad 
and comprehensive overview, although it is certainly not exhaustive. We have 
more thoroughly discussed some of the fundamental algorithms, and we have 
complemented them with descriptions of more recent and advanced 
developments. The large number of references gives the reader the opportunity 
to further explore different aspects and directions.  

With continuous improvements over the last decades, current state-of-the-art 
motion estimation algorithms typically achieve good performances. Nevertheless, 
a general standard motion estimation technique remains elusive. In particular, 
diverse applications imply very different requirements and properties. However, 
further enhancements can be expected in the future.   
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Relevant Websites 

 
Optical Flow - Middlebury Computer Vision: http://vision.middlebury.edu/flow/ 

Optical Flow Algorithm Evaluation: http://of-eval.sourceforge.net/ 

The Moving Picture Experts Group website: http://mpeg.chiariglione.org/  

 

 

 


