Introduction to compression and quantization

Marco Cagnazzo,
cagnazzo@telecom-paristech.fr

TSIA 207
Plan

Introduction
 Vision
 Representation

Uniform Quantization

Predictive Quantization
Plan

Introduction
 Vision
 Representation

Uniform Quantization

Predictive Quantization
The eye

- Light is transformed in neural impulsions by the rods and the cones in the retina
 - **Cones** (6÷7 millions, at the center of the retina): sensitive to colors, good resolution, work in high illumination
 - **Rods** (75÷150 millions): sensitive to light intensity, smaller resolution, work in low illumination
Light Perception

- Perceived luminosity: log function of intensity
- Global dynamic range: $\approx 10^{10}$ (100dB)
- Adaptation to light conditions
Contrast sensitivity function

- Contrast sensitivity function (CSF)
- Maximum at 2-5 cycles per degree
Color perception

- Visible light: 400–700 nm
- Cones sensitivity depends on the wavelength
 - 65% red cones
 - 33% green cones
 - 2% blue cones
- The color sensation corresponds to the *tristimulus*
- Combination of *primary colors*
Representation of digital images

- Discrete grid, image $N \times M$ pixels
- Pixel (m, n) is also accessible in “raster scan” in position k
 \[k = (n - 1)M + m \]
- Notation: $f_{n,m}$ or f_k

![Diagram showing pixel notation and raster scan position](image)
Representation of digital images

Images color: RGB Format

Color images = three components
Representation of digital images

Color spaces

Espace RGB

Espace HSV
Representation of digital images

Color images: YUV Format

One luminance component (Y) and two chrominance components (U and V, typically subsampled)
Color space subsampling

- **4:1:1**: 1/4 horizontal resolution, Full vertical resolution
- **4:2:0**: 1/2 horizontal resolution, 1/2 vertical resolution
- **4:2:2**: 1/2 horizontal resolution, Full vertical resolution
- **4:4:4**: Full horizontal resolution, Full vertical resolution
Compression: Motivations

- HD DVB System
 1 luminance component \(1920 \times 1080\)
 2 chrominance components \(960 \times 540\)
 8 bits quantization
 25 images per second
 \(R \approx 622\) Mbps

- 2-hours movie \(\approx 560\) GB
Compression fundamentals

Why is it possible to compress?

► Statistical redundancy
 ► images are spatially homogeneous
 ► successive images are similar one to another

► Psychovisual redundancy
 ► Spatial frequency sensitivity
 ► Masking effects
 ► Contours importance
 ► Other limits of the HVS

► A compression algorithm should take into account both kinds of redundancy to maximize its performance
Lossless and lossy algorithms

- Lossless algorithms
 - Perfect reconstruction
 - Based on statistics
 - Small compression ratio
- Lossy algorithms
 - Decoded \neq original
 - Based on quantization
 - Psychovisual redundancy: “visually lossless”
 - High compression ratio
Symmetric and asymmetric algorithms (video)

- **Symmetric algorithms**
 - Same complexity for encoder and decoder
 - No motion estimation/compensation
 - Low compression ratio
 - Possibly real-time

- **Asymmetric algorithms**
 - Encoder (much) more complex than decoder
 - Motion Estimation/Compensation
 - High compression ratio
 - Typically “off line”, or hardware implementations
Basic tools for compression

- Transform
 - It concentrates information in a few coefficients
- Prediction
 - Alternative (and sometimes additional) method for information concentration
- Quantization
 - Rate reduction: rough representation of less important coefficients
 - Lossless coding, or variable length coding (VLC)
 - Residual redundancy reduction
Plan

Introduction

Uniform Quantization

Predictive Quantization
Definitions

\[Q : x \in \mathbb{R} \rightarrow y \in C = \{\hat{x}^1, \hat{x}^2, \ldots \hat{x}^L\} \subset \mathbb{R} \]

- **C**: Dictionary, it is a discrete subset of \(\mathbb{R} \)
- **\(\hat{x}^i \)**: quantization level, codeword
- **\(e = x - Q(x) \)**: Quantization noise
- **\(\Theta^i = \{x : Q(x) = \hat{x}^i\} \)**: Decision regions or cells

Regions and levels completely define the QS.
Definition: scalar quantization (SQ)

\[Q: x \in \mathbb{R} \rightarrow y \in C = \{ \hat{x}^1, \hat{x}^2, \ldots, \hat{x}^L \} \subset \mathbb{R} \]
Example 1
Example 1
Example 1

\[y(n) = Q[x(n)] \]
Example 1

\[y(n) = Q[x(n)] \]
\[e(n) = x(n) - y(n) \]
Example 2

\[y(n) = Q[x(n)] \]
Introduction
Uniform Quantization
Predictive Quantization

Example 2

\[y(n) = Q[x(n)] \]
\[e(n) = x(n) - y(n) \]
Quantization as coding / decoding

- The encoder sends $i(n)$
- The decoder associates to $i(n)$ a codeword $\hat{x}^i(n)$
- Terminology: quantization is $x \rightarrow i$ *inverse quantization* is $i \rightarrow \hat{x}^i$
Rate of a QS

- Number of bits needed to represent \(i(n) \)
- We assume \(R = \log_2 L \)
- Good approximation of real-life rates (entropy coders)
Distorsion

- We use the squared error:
 \[d[x(n), \hat{x}(n)] = |e(n)|^2 = |x(n) - \hat{x}(n)|^2 \]

- For a signal \(x(\cdot) \) of duration \(N \), we use the mean square error (MSE):
 \[D = \frac{1}{N} \sum_{n=0}^{N-1} d[x(n), \hat{x}(n)] \]

- For random signals,
 \[D = E \left\{ |X(n) - Q(X(n))|^2 \right\} = E \left\{ |E(n)|^2 \right\} \]

- In this case, distortion is the variance of the random process \(E(n) = X(n) - Q(X(n)) \), and is indicated as \(\sigma_Q^2 \)
A uniform SQ (UQ) is characterized by:

- \(\forall i, t^i = t^{i-1} + \Delta \)
- \(\hat{x}^i = \frac{t^i + t^{i-1}}{2} \)

UQ is simple, it minimizes the maximum error and is optimal for uniform RV’s (random variables)

Moreover

- \(\Delta^i = \Delta = 2A/L \)
Uniform Quantization: distortion

Hypothesis: $X \sim \mathcal{U}(-A, A)$. Find $\sigma_Q^2 = \mathbb{E}[(X - \hat{X})^2]$
Uniform Quantization: distortion

Hypothesis: $X \sim \mathcal{U}(-A, A)$. Find $\sigma_Q^2 = E[(X - \hat{X})^2]$

$$\sigma_Q^2 = E[(X - \hat{X})^2] = \int_{-A}^{A} p_X(u)[u - Q(u)]^2 du$$
Hypothesis : $X \sim U(-A, A)$. Find $\sigma_Q^2 = E[(X - \hat{X})^2]$.

\[\sigma_Q^2 = E[(X - \hat{X})^2] = \int_{-A}^{A} p_X(u)[u - Q(u)]^2 \, du\]

\[\cdots = \sum_{i=1}^{L} \int_{\Theta^i} \frac{1}{2A} [u - \hat{x}^i]^2 \, du = \frac{1}{2A} \sum_{i=1}^{L} \int_{\hat{x}^i - \Delta/2}^{\hat{x}^i + \Delta/2} [u - \hat{x}^i]^2 \, du\]

\[= \frac{1}{2A} \sum_{i=1}^{L} \int_{-\Delta/2}^{\Delta/2} t^2 \, dt = \frac{1}{2A} L \frac{\Delta^3}{12} = \frac{\Delta^2}{12}\]

Quantization noise is actually a uniform RV in $(-\Delta/2, \Delta/2)$.
Uniform Quantization: RD curve

\[D = \frac{\Delta^2}{12} = \frac{4A^2}{12L^2} = \frac{A^2}{3 \cdot 2^{2R}} = \sigma_X^2 2^{-2R} \]

\[\text{SNR} = 10 \log_{10} \frac{E\{X^2\}}{D} = 10 \log_{10} \frac{\sigma_X^2}{\sigma_X^2 2^{-2R}} \]

\[= 10 \log_{10} 2^{2R} \approx 6R \]
High Resolution (HR) Uniform Quantization

- Hypothesis: $L \to +\infty$, X generic RV
- In HR, in any given Θ^i we approximate p_X as a (different) constant.
- Therefore, the quantization noise in Θ^i is $\mathcal{U}(-\frac{\Delta}{2}, \frac{\Delta}{2})$
- From the total probability law, $E \sim \mathcal{U}(-\frac{\Delta}{2}, \frac{\Delta}{2})$
- Donc :

$$D = \frac{\Delta^2}{12} = \frac{A^2}{3} 2^{-2R}$$
High Resolution (HR) Uniform Quantization

\[\text{SNR} = 10 \log_{10} \frac{E \{ X^2 \}}{D} = 10 \log_{10} \frac{\sigma_X^2}{A^2/3} 2^{2R} \approx 6R - 10 \log_{10} \frac{\gamma^2}{3} \]

where \(\gamma^2 = \frac{X_{\text{max}}^2}{\sigma_X^2} = \frac{A^2}{\sigma_X^2} \) is the load factor, i.e. the ratio between the peak power and the average power.

\[D = \frac{A^2}{3} 2^{-2R} = \frac{\gamma^2}{3} \sigma_X^2 2^{-2R} = K_X \sigma_X^2 2^{-2R} \]
Scalar quantization: example on color image

Image Originale, 24 bpp
Scalar quantization: example on color image

Débit 21 bpp PSNR 47.19 dB TC 1.143
Scalar quantization: example on color image

Débit 18 bpp PSNR 42.38 dB TC 1.333

[Image of peppers]
Scalar quantization: example on color image

Débit 15 bpp PSNR 36.97 dB TC 1.600
Scalar quantization: example on color image

Débit 12 bpp | PSNR 31.40 dB | TC 2.000
Scalar quantization: example on color image

Débit 9 bpp PSNR 29.26 dB TC 2.667
Scalar quantization: example on color image

Débit 6 bpp PSNR 27.83 dB TC 4.000
Scalar quantization: example on color image
Introduction

Uniform Quantization

Predictive Quantization

Plan

Introduction

Uniform Quantization

Predictive Quantization
Predictive quantization

Principles

- Quantization alone is not effective for compression
- Too simple underlying model: SQ neglects dependencies among samples
- Idea: exploit sample correlation by prediction
- Goal: reduction of the signal’s variance
Coding scheme

Open loop scheme

- $x(n)$ is predicted from the past
- If the prediction is good, $v(n) \approx x(n)$

![Diagram]

- How to provide $v(n)$?
- What is the gain?
Prediction gain

Prediction Error = Signal Error:

\[q(n) = y(n) - \hat{y}(n) = x(n) - v(n) - \hat{x}(n) + v(n) = \bar{q}(n) \]

Therefore the target of predictive quantization (PQ) is to minimize the distortion of \(y \)

Coding gain:

\[\text{SNR}_p = 10 \log_{10} \frac{\sigma_X^2}{D} = 10 \log_{10} \frac{\sigma_X^2}{\sigma_Y^2} + 10 \log_{10} \frac{\sigma_Y^2}{D} = G_P + G_Q \]

Prediction is effective if and only if the prediction error has a smaller variance than the original signal
Example

\[X(n) \sim \mathcal{N}(0, \sigma^2) \]
\[V(n) = X(n - 1) \]
\[\mathbb{E}[X(n)X(m)] = \sigma^2 \rho^{|n-m|} \]
\[\rho : G_P > 0 ? \]
Example

\[X(n) \sim \mathcal{N}(0, \sigma^2) \]
\[V(n) = X(n - 1) \]
\[\mathbb{E}[X(n)X(m)] = \sigma^2 |n - m| \]
\[\rho : \mathcal{G}_P > 0 ? \]

\[Y(n) = X(n) - X(n - 1) \text{ Zero mean Gaussian RV} \]
\[\sigma_Y^2 = \mathbb{E}[(X(n) - X(n - 1))^2] = 2\sigma^2 - 2\sigma^2 \rho \]
\[\mathcal{G}_P = 10 \log_{10} \frac{\sigma_X^2}{\sigma_Y^2} = 10 \log_{10} \frac{\sigma^2}{2(1 - \rho)\sigma^2} \]
\[\mathcal{G}_P > 0 \iff \rho > \frac{1}{2} \]
Predictors

- Linear Predictors are simple and moreover optimal for Gaussian RV

\[v(n) = - \sum_{i=1}^{P} a_i x_{n-i} \quad \text{Filter with } P \text{ parameters} \]

\[y(n) = x(n) - v(n) = \sum_{i=0}^{P} a_i x_{n-i} \quad \text{Prediction error} \]

- with \(a_0 = 1 \).
- \(y \) is the result of filtering \(x \) with

\[A(z) = 1 + a_1 z^{-1} + \ldots + a_P z^{-P} \]

- Optimal filter: minimization of \(\sigma_Y^2 \)
AR model

- If \(Y(z) = A(z)X(z) \), \(X(z) = \frac{Y(z)}{A(z)} \)
- If the prediction is optimal, \(Y(z) \) is white noise with power \(\sigma_Y^2 \)
- Thus, the spectral power density (SPD) of \(X \) is
 \[
 S_X(f) = \frac{\sigma_Y^2}{|A(f)|^2}
 \]
- The underlying model for \(X \) is autoregressive (AR):
 \[
 X(z) = \frac{Y(z)}{1 + a_1z^{-1} + \ldots + a_Pz^{-P}}
 \]
 \[
 x(n) + a_1 x(n-1) + \ldots + a_P x(n-P) = y(n)
 \]
- \(X(n) \) is an AR filtering of white noise \(Y(n) \)
Problème :
Find the vector a minimizing

$$\sigma_Y^2 = E \left\{ Y^2(n) \right\} = E \left\{ \left[X(n) + \sum_{i=1}^{P} a_i X(n - i) \right]^2 \right\}$$
Predictor selection

\[\sigma_Y^2 = \mathbb{E}\{X^2(n)\} + 2 \sum_{i=1}^{P} a_i \mathbb{E}\{X(n)X(n-i)\} + \sum_{i=1}^{P} \sum_{j=1}^{P} a_i a_j \mathbb{E}\{X(n-i)X(n-j)\} \]

\[= \sigma_X^2 + 2r^t a + a^t R_X a \]

with:

\[r = [r_X(1) \ldots r_X(P)] \]

\[R_X = \begin{bmatrix}
 r_X(0) & r_X(1) & r_X(2) & \ldots & r_X(P-1) \\
 r_X(1) & r_X(0) & r_X(1) & \ldots & r_X(P-2) \\
 r_X(2) & r_X(1) & r_X(0) & \ldots & r_X(P-3) \\
 \vdots & \vdots & \vdots & \ddots & \vdots \\
 r_X(P-2) & r_X(P-3) & r_X(P-4) & \ldots & r_X(1) \\
 r_X(P-1) & r_X(P-2) & r_X(P-3) & \ldots & r_X(0)
\end{bmatrix} \]

\[r_X(k) = \mathbb{E}\{X(n)X(n-k)\} \]
Predictor selection

Minimisation of Y variance:

$$\frac{\partial \sigma_Y^2}{\partial a} = 2r + 2R_X a = 0$$

Thus:

$$a^{\text{opt}} = -R_X^{-1} r \quad \text{and} \quad \sigma_Y^2 = \sigma_X^2 + r^t a^{\text{opt}}$$

Autocorrelation r_X can be estimated as

$$\hat{r}_X(k) = \frac{1}{N} \sum_{n=0}^{N-1-k} X(n)X(n+k)$$
Predictive quantization: example

 Predictor:

$$\hat{f}_{n,m} = af_{n-1,m} + bf_{n,m-1}$$

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>σ_Y^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>2902.7</td>
</tr>
<tr>
<td>1/2</td>
<td>1/2</td>
<td>78.7</td>
</tr>
<tr>
<td>0.449</td>
<td>0.546</td>
<td>78.4</td>
</tr>
</tbody>
</table>