[:fr]Nombre d’Erdos[:en]Erdos’ Number[:it]Numero di Erdos[:]

[:fr]De Wikipedia :

Le nombre d’Erdos honore le mathématicien hongrois Paul Erdos, qui fut l’un des auteurs les plus prolifiques de toute l’histoire des mathématiques. Il rédigea dans sa vie près de 1500 articles scientifiques, dont beaucoup de grande importance ou apportant des développements substantiels. La plupart du temps, il cosignait ces articles avec d’autres personnes. Il avait approximativement 500 collaborateurs qui ont donc un nombre d’Erdos de 1. Les gens qui ont collaboré avec eux (mais pas avec Erdos lui-même) ont un nombre d’Erdos de 2, ceux qui ont collaboré avec ces derniers et pas les précédents ont un nombre d’Erdos de 3, et ainsi de suite.

Marco Cagnazzo a un nombre d’Erdos inférieur ou égal à cinq par les publications suivantes :

1) P. Erdos, A. L. Rubin and H. Taylor. « Choosability in graphs », in Proc. West Coast Conf. on Combinatorics, Graph Theory and Computing, Congressus Numerantium XXVI: 125–157 (1979).

2) A. Rubin and J. R. Klauder. « The Comparative Roles of Connected and Disconnected Trajectories in the Evaluation of the Semiclassical Coherent-State Propagator », Annals of Physics 241, 212­234 (1995).

3) I. Daubechies and J.R. Klauder. « Constructing measures for path integrals », J. Math. Phys., 23 (10), pp. 1806-1822, 1982.

4) M. Antonini, M. Barlaud, P. Mathieu, and I. Daubechies. « Image coding using wavelet transform », IEEE Trans. Image Proc., 1 (2), pp. 205-220, 1992.

5) M. Cagnazzo, F. Castaldo, T. Andre, M. Antonini, M. Barlaud. « Optimal Motion Estimation for Wavelet Video Coding », IEEE Transaction on Circuits and Systems for Video Technology, vol. 17, no. 7, July 2007, pp 907-911.[:en]From Wikipedia:


The Erdos number, honoring the late Hungarian mathematician Paul Erdos, is a way of describing the « collaborative distance » between a person and Erdos, as measured by authorship of mathematical papers.
In order to be assigned an Erdos number, an author must co-write a mathematical paper with an author with a finite Erdos number. Paul Erdos is the one person having an Erdos number of zero. If the lowest Erdos number of a coauthor is k, then the author’s Erdos number is k + 1.

Marco Cagnazzo has an Erdos number less or equal to five through the following connections:

1) P. Erdos, A. L. Rubin and H. Taylor. « Choosability in graphs », in Proc. West Coast Conf. on Combinatorics, Graph Theory and Computing, Congressus Numerantium XXVI: 125–157 (1979).

2) A. Rubin and J. R. Klauder. « The Comparative Roles of Connected and Disconnected Trajectories in the Evaluation of the Semiclassical Coherent-State Propagator », Annals of Physics 241, 212­234 (1995).

3) I. Daubechies and J.R. Klauder. « Constructing measures for path integrals », J. Math. Phys., 23 (10), pp. 1806-1822, 1982.

4) M. Antonini, M. Barlaud, P. Mathieu, and I. Daubechies. « Image coding using wavelet transform », IEEE Trans. Image Proc., 1 (2), pp. 205-220, 1992.

5) M. Cagnazzo, F. Castaldo, T. Andre, M. Antonini, M. Barlaud. « Optimal Motion Estimation for Wavelet Video Coding », IEEE Transaction on Circuits and Systems for Video Technology, vol. 17, no. 7, July 2007, pp 907-911.

[:it]Da Wikipedia:


The Erdos number, honoring the late Hungarian mathematician Paul Erdos, is a way of describing the « collaborative distance » between a person and Erdos, as measured by authorship of mathematical papers.
In order to be assigned an Erdos number, an author must co-write a mathematical paper with an author with a finite Erdos number. Paul Erdos is the one person having an Erdos number of zero. If the lowest Erdos number of a coauthor is k, then the author’s Erdos number is k + 1.

Marco Cagnazzo a un numero di Erdos non superiore a cinque tramite le seguenti pubblicazioni:

1) P. Erdos, A. L. Rubin and H. Taylor. « Choosability in graphs », in Proc. West Coast Conf. on Combinatorics, Graph Theory and Computing, Congressus Numerantium XXVI: 125–157 (1979).

2) A. Rubin and J. R. Klauder. « The Comparative Roles of Connected and Disconnected Trajectories in the Evaluation of the Semiclassical Coherent-State Propagator », Annals of Physics 241, 212­234 (1995).

3) I. Daubechies and J.R. Klauder. « Constructing measures for path integrals », J. Math. Phys., 23 (10), pp. 1806-1822, 1982.

4) M. Antonini, M. Barlaud, P. Mathieu, and I. Daubechies. « Image coding using wavelet transform », IEEE Trans. Image Proc., 1 (2), pp. 205-220, 1992.

5) M. Cagnazzo, F. Castaldo, T. Andre, M. Antonini, M. Barlaud. « Optimal Motion Estimation for Wavelet Video Coding », IEEE Transaction on Circuits and Systems for Video Technology, vol. 17, no. 7, July 2007, pp 907-911.

[:]